2056
A. Crossman, Jr. et al. / Carbohydrate Research 337 (2002) 2049–2059
(27 mg, 96%); [h]D25 +7° (c 0.3, 10:10:3 CHCl3–
MeOH–water); 1H NMR (10:10:3 CDCl3–CD3OD–
D2O): l 5.15 (m, 1 H, H-2 glycerol), 4.75 (d, 1 H, J1%,2%
8.3 Hz, H-1%), 4.35–4.05 (3 H, H-2, 1- or 3-CH2 glyc-
erol), 4.00–3.90 (m, 2 H, 1- or 3-CH2 glycerol), 3.77
(dd, 1 H, J1,2 1.9, J1,6 9.9 Hz, H-1), 3.64 (2 H, H-6, 6%a),
3.54 (2 H, H-4, 6%b), 3.42 (1 H, H-3%), 3.35 (dd, 1 H, J2,3
2.7, J3,4 9.1 Hz, H-3), 3.30–3.20 (8 H, H-4%, 5%, 3×
CH2CH3), 3.17 (t, 1 H, J4,5=J5,6 9.4 Hz, H-5), 2.77 (t,
1 H, J1%,2%=J2%,3% 8.3 Hz, H-2%), 2.25 (m, 4 H, 2×
COCH2), 1.50 (m, 4 H, 2×COCH2CH2), ꢀ1.20 (57
H, 3×CH2CH3, 2×[CH2]12), 0.80 (t, 6 H, J 7.0 Hz,
2×CH2CH3); 31P NMR (10:10:3 CDCl3–CD3OD–
D2O): lp 0.70 (with heteronuclear decoupling);
ESMS(−): m/z 970.2 [M−NEt3−H]−.
1-D-6-O-(2-Azido-3,4,6-tri-O-benzyl-2-deoxy-h-D-
mannopyranosyl)-2,3,4,5-tetra-O-benzyl-myo-inositol
(28).—Demethoxybenzylation of the compound 27
(227 mg, 0.20 mmol) in CH2Cl2 (10 mL) containing
TFA (216 mL, 2.8 mmol) was achieved as in the prepa-
ration of the compound 9. RBC (elution first with
hexane and then with 3:1 hexane–EtOAc) furnished the
alcohol 28 (123 mg, 62%) as an oil; [h]2D5 +30° (c 1.2,
1
CHCl3); H NMR: l 7.50–7.00 (35 H, 7×Ph), 5.45 (d,
1 H, J1%,2% 1.1 Hz, H-1%), 5.10–4.20 (14 H, 7×CH2Ph),
4.05–4.00 (3 H, H-2%, 4%, 6), 3.95–3.91 (3 H, H-2, 3%, 5%),
3.88 (t, 1 H, J3,4=J4,5 9.5 Hz, H-4), 3.48–3.41 (2 H,
H-1, 3), 3.37 (dd, 1 H, J5%,6%a 1.9, J6%a,6%b 11.3 Hz, H-6%a),
3.33–3.25 (2 H, H-5, 6%b), 2.25 (d, 1 H, J1,OH 7.0 Hz,
OH); ESMS(+): m/z 1020.6 [M+Na]+.
Triethylammonium 1-
D-6-O-(2-azido-3,4,6-tri-O-ben-
2-Azido-3,4,6-tri-O-benzyl-2-deoxy-h-D-mannopyran-
zyl-2-deoxy-h- -mannopyranosyl)-2,3,4,5-tetra-O-ben-
D
osyl fluoride (26).—To a cooled (−30 °C) and stirred
solution of the hemiacetal 2528 (158 mg, 0.33 mmol) in
anhyd 1,2-dichloroethane (15 mL) was added DAST
(183 mL, 1.38 mmol). The reaction mixture was allowed
to attain rt over 30 min and it was then partitioned
between ice-water (20 mL) and Et2O (20 mL). The
aqueous phase was separated and further extracted with
Et2O (20 mL). The ethereal extracts were combined and
washed with brine (20 mL), dried (MgSO4), and con-
centrated under reduced pressure. The residue so ob-
tained was percolated through a short silica-gel column
(further elution with Et2O) and the eluent was concen-
trated under reduced pressure. RBC (elution first with
cyclohexane and then with 4:1 cyclohexane–Et2O) of
the residue gave the a-glycosyl fluoride 26 (106 mg,
zyl-myo-inositol 1-(1,2-di-O-hexadecanoyl-sn-glycerol
3-phosphate) (29).—This phosphoric diester was ob-
tained from the H-phosphonate 2214,23 (227 mg, 0.31
mmol) and the alcohol 28 (120 mg, 0.12 mmol) essen-
tially as described for the 1-(octadecyl phosphate) 17.
RBC (elution first with CHCl3 and then with 12:1
CHCl3–MeOH) provided the phosphoric diester as the
TEA salt 29 (145 mg, 70%); [h]2D5 +24° (c 1.2, CHCl3);
1H NMR: l 7.50–6.90 (35 H, 7×Ph), 5.46 (d, 1 H,
J1%,2% 1.2 Hz, H-1%), 5.16 (m, 1 H, H-2 glycerol), 4.96–
4.47 (14 H, 7×CH2Ph), 4.42 (2 H, H-2, 2%), 4.30 (m, 2
H, 1- or 3-CH2 glycerol), 4.13 (2 H, H-1, 6), 4.05–3.97
(2 H, H-3%, 4), 3.96–3.82 (4 H, H-4%, 5%, 1- or 3-CH2
glycerol), 3.46 (dd, 1 H, J2,3 1.7, J3,4 9.6 Hz, H-3), 3.29
(t, 1 H, J4,5=J5,6 9.0 Hz, H-5), 3.21 (dd, 1 H, J5%,6%a 1.8
Hz, H-6%a), 3.12 (d, 1 H, J6%a,6%b 10.5 Hz, H-6%b), 2.73 (q,
6 H, J 7.0 Hz, 3×CH2CH3), 2.15 (m, 4 H, 2×
COCH2), 1.48 (m, 4 H, 2×COCH2CH2), ꢀ1.20 (48
H, 2×[CH2]12), 1.08 (t, 9 H, J 7.2 Hz, 3×CH2CH3),
0.85 (t, 6 H, J 7.0 Hz, 2×CH2CH3); 31P NMR: lp
−3.41 (with heteronuclear decoupling): ESMS(−):
m/z 1626.8 [M−NEt3−H]−.
1
67%); [h]2D5 +33° (c 1.4, CHCl3); H NMR: l 7.40–
7.05 (15 H, 3×Ph), 5.55 (dd, 1 H, J1,2 1.4, J1,F 50.2 Hz,
H-1), 4.90–4.45 (6 H, 3×CH2Ph), 4.05–3.95 (3 H,
H-2, 3, 4), 3.88 (m, 1 H, H-5), 3.74 (dd, 1 H, J5,6a 3.9
Hz, H-6a), 3.63 (dd, 1 H, J5,6b 1.9, J6a,6b 11.0 Hz,
H-6b).
1-D-6-O-(2-Azido-3,4,6-tri-O-benzyl-2-deoxy-h-D-
mannopyranosyl)-2,3,4,5-tetra-O-benzyl-1-O-(4-meth-
oxybenzyl)-myo-inositol (27).—The coupling between
the acceptor 203 (99 mg, 0.15 mmol) and the glycosyl
fluoride 26 (100 mg, 0.21 mmol) was conducted essen-
tially as described for the preparation of the pseu-
dodisaccharide 13. RBC (elution first with cyclohexane
and then with 4:1 cyclohexane–Et2O) afforded the a-
linked pseudodisaccharide 27 (102 mg, 61%) as an oil;
Triethylammonium 1-
mannopyranosyl)-myo-inositol
D
-6-O-(2-amino-2-deoxy-h-
D-
1-(1,2-di-O-hexadec-
anoyl-sn-glycerol 3-phosphate) (30).—A solution of the
TEA salt 29 (105 mg, 0.061 mmol) in 2:2:1 n-
propanol–THF–water (5 mL) containing 20%
Pd(OH)2 on carbon (50 mg) was stirred under 3 atm of
hydrogen for 1 h. Work-up as described for the com-
pound 18 gave a-
D
-ManpN-PI (30) (60 mg, 92%); [h]D25
1
[h]2D5 +13° (c 1.0, CHCl3); H NMR: l 7.50–6.80 (39
1
+13° (c 0.2, 10:10:3 CHCl3–MeOH–water); H NMR
(10:10:3 CDCl3–CD3OD–D2O): l 5.03 (s, 1 H, H-1%),
4.98 (m, 1 H, H-2 glycerol), 4.13 (m, 2 H, 1- or 3-CH2
glycerol), 3.90–3.70 (6 H, H-1, 2, 3%, 5%, 1- or 3-CH2
glycerol), 3.58 (t, 1 H, J1,6=J5,6 9.5 Hz, H-6), 3.53 (2
H, H-6%a,b), 3.47 (m, 1 H, H-2%), 3.33 (2 H, H-4, 4%),
3.14 (dd, 1 H, J2,3 2.6, J3,4 9.8 Hz, H-3), 3.04 (m, 1 H,
H-5), 2.89 (q, 6 H, J 7.3 Hz, 3×CH2CH3), 2.05 (dt, 4
H, J 7.3 Hz, 2×COCH2), 1.31 (m, 4 H, 2×
H, C6H4, 7×Ph), 5.39 (d, 1 H, J1%,2% 1.1 Hz, H-1%),
5.10–4.20 (16 H, 8×CH2Ar), 4.19 (t, 1 H, H-6), 4.11
(t, 1 H, H-4), 4.03 (t, 1 H, J1,2=J2,3 2.0 Hz, H-2),
3.96–3.92 (2 H, H-3%, 4%), 3.84 (m, 1 H, H-5%), 3.75 (s, 3
H, ArOCH3), 3.72 (dd, 1 H, H-2%), 3.37 (dd, 1 H, J2,3
2.0, J3,4 10.0 Hz, H-3), 3.30 (t, 1 H, J4,5=J5,6 10.0 Hz,
H-5), 3.25 (dd, 1 H, J1,2 2.0, J1,6 10.0 Hz, H-1), 3.19–
3.13 (2 H, H-6%a,b); ESMS(+): m/z 1140.5 [M+Na]+.