1632
L. Planas et al.
LETTER
2976, 2937, 1660 cm–1. MS (CI, NH3): m/z = 308 (MH+),
238 (MH+ – C4H6O). 1H NMR (300 MHz, CDCl3): = 0.35–
0.5 (m, 1 H), 1.01 (s, 1 H, D2O exch.), 1.35–1.55 (m, 2 H),
1.55–1.70 (m, 2 H), 1.78 (d, J = 7.1 Hz, 3 H), 1.85–2.00 (m,
1 H), 4.25 (t, J = 1.6 Hz, 1 H), 6.30 (m, 2 H), 6.94 (dd,
J = 7.0, 6.0 Hz, 1 H), 7.40–7.60 (m, 4 H), 7.83 (d, J = 8.1 Hz,
References
(1) (a) Boivin, J.; Yousfi, M.; Zard, S. Tetrahedron Lett. 1997,
38, 5985. (b) Denmark, S. E.; Middleton, D. S. J. Org.
Chem. 1998, 63, 1604. (c) Kende, A. S.; Hernando, J. I.;
Milbank, J. B. J. Org. Lett. 2001, 3, 2505. (d) Doan, H. D.;
Goré, J.; Vatèle, J.-M. Tetrahedron Lett. 1999, 40, 6765.
(e) Bailey, P. D.; Morgan, K. M.; Smith, D. I.; Vernon, J. M.
Tetrahedron Lett. 1994, 35, 7115. (f) Braun, N. A.;
Ciufolini, M. A.; Peters, K.; Peters, E.-M. Tetrahedron Lett.
1998, 39, 4667. (g) Tietze, L. F.; Steck, P. L. Eur. J. Org.
Chem. 2001, 4353.
1 H), 7.90 (d, J = 8.3 Hz, 1 H), 8.23 (d, J = 8.4 Hz, 1 H). 13
C
NMR (75 MHz, DMSO): = 17.7, 24.4, 36.2, 40.6, 55.1,
74.8, 81.3, 128.5, 130.3, 130.8, 131.7, 132.9, 134.3, 134.5,
136.1, 139.0, 143.5, 151.3, 177.6. Major diastereoisomer:
[ ]D25 –13.8 (c 0.97, CHCl3). Mp = 196–198 °C (Et2O). IR
(KBr): = 3382, 2977, 2934, 1658, 1394 cm–1. MS (CI,
NH3): m/z = 308 (MH+), 238 (MH+ – C4H6O). 1H NMR (300
MHz, CDCl3): = 1.36 (m, 1 H), 1.80–2.10 (m, 5 H), 1.75
(s, 1 H), 1.86 (d, J = 7.0 Hz, 3 H), 3.51 (t, J = 1.5 Hz, 1 H),
6.07 (q, J = 7.0 Hz, 1 H), 6.28 (dd, J = 1.6, 6.0 Hz, 1 H), 6.81
(dd, J = 1.8, 6.0 Hz, 1 H), 7.47 (m, 3 H), 7.63 (m, 2 H), 7.84
(m, 2 H). 13C NMR (75 MHz, CDCl3): = 13.6, 19.1, 31.9,
36.2, 49.0, 69.6, 75.9, 123.2, 125.2, 125.8, 126.1, 127.3,
128.5, 129.1, 129.2, 132.0, 134.0, 136.2, 145.7, 173.3. Anal.
Calcd for C20H21NO2: C, 78.15; H, 6.89; N, 4.56. Found: C,
78.03; H, 7.06; N, 4.60.
(2) (a) Baussanne, I.; Chiaroni, A.; Husson, H.-P.; Riche, C.;
Royer, J. Tetrahedron Lett. 1994, 35, 3931. (b) Baussanne,
I.; Royer, J. Tetrahedron Lett. 1996, 37, 1213.
(c) Baussanne, I.; Royer, J. Tetrahedron Lett. 1998, 39, 845.
(d) Dudot, B.; Micouin, L.; Baussanne, I.; Royer, J.
Synthesis 1999, 688. (e) Baussanne, I.; Travers, C.; Royer, J.
Tetrahedron: Asymmetry 1998, 9, 797. (f) Baussanne, I.;
Chiaroni, A.; Royer, J. Tetrahedron: Asymmetry 2001, 12,
1219.
(3) (a) Paquette, L. A.; Negri, J. T.; Rogers, R. D. J. Org. Chem.
1992, 57, 3947. (b) Paquette, L. A.; Lanter, J. C.; Jonhston,
J. N. J. Org. Chem. 1997, 62, 1702. (c) Paquette, L. A.;
Kiney, M. J.; Dullweber, U. J. Org. Chem. 1997, 62, 1713.
(4) Fenster, M. D. E.; Patrick, B. O.; Dake, G. R. Org. Lett.
2001, 3, 2109.
(6) The crystal structure has been deposited at the Cambridge
Crystallographic Data Centre; deposition number CCDC
180815.
(7) (a) Kuehne, M. E.; Matson, P. A.; Bornmann, W. G. J. Org.
Chem. 1991, 56, 513. (b) Ishibashi, H.; Fuke, Y.;
Yamashita, T.; Ikeda, M. Tetrahedron: Asymmetry 1998, 9,
797.
(5) Typical Procedure for Silyloxypyrroles 5.
To a solution of 2,5-dimethoxy-2,5-dihydrofuran (1 equiv)
and chiral amine 4a,c–e (1 equiv) in water (0.25 M) was
added a concd solution of HCl (1.5 equiv). The mixture was
stirred at r.t. for 3 h then neutralized with solid NaHCO3 and
extract with CH2Cl2. The combined organic layers were
dried over MgSO4 and the solvent distilled off. A red oil,
mixture of the , and , unsaturated lactams was then
obtained. tert-Butyldimethylsilyl triflate (1 equiv) was
slowly added to a solution of either the crude product or the
purified lactams (1 equiv) and NEt3 (2 equiv) in CH2Cl2 (0.1
M) and the mixture was stirred at r.t. for 1 h. The solvent was
evaporated under vacuum and the residue purified by
filtration on a pad of alumina with a mixture of heptane and
EtOAc. (Nota: silyloxypyrroles are used to be kept under
argon at –20 °C). Analyses for 5d: [ ]D25 +11.7 (c 0.69,
CH2Cl2). Mp = 97 °C (heptane–EtOAc). IR (KBr):
= 2929, 2858, 1560, 1492, 1438 cm–1. 1H NMR (300 MHz,
CDCl3): = –0.05 (s, 3 H), 0.23 (s, 3 H), 0.80 (s, 9 H), 1.89
(d, J = 7.0 Hz, 3 H), 5.31 (dd, J = 2.0, 3.6 Hz, 1 H), 6.01 (t,
J = 3.5 Hz, 1 H), 6.16 (q, J = 7.0 Hz, 1 H), 6.35 (dd, J = 1.9,
3.4 Hz, 1 H), 7.10 (d, J = 7.2 Hz, 1 H), 7.42 (t, J = 7.9 Hz,
1 H), 7.50–7.55 (m, 2 H), 7.77 (d, J = 8.3 Hz, 1 H), 7.88 (d,
J = 7.4 Hz, 1 H), 8.08 (d, J = 8.0 Hz, 1 H). 13C NMR
(75 MHz, CDCl3): = –5.0, –4.6, 18.2, 21.4, 25.7, 49.5,
87.7, 105.2, 109.8, 123.2, 125.8, 126.5, 128.1, 129.1, 131.0,
134.1, 139.7, 142.2. HRMS (CI, NH3): m/z calcd for
C22H30NOSi (MH+): 352.2097. Found: 352.2101. Typical
Procedure for Cyclobutanols 6. To a solution of
silyloxypyrrole 5a–e (1 equiv) in anhyd CH2Cl2 (0.15 M)
with 3Å MS, under argon, was added cyclobutanone (or
cyclopentanone) (1.6 equiv). After 15 min at r.t., the solution
was cooled at –78 °C and BF3 OEt2 (1.5 equiv) was added in
the course of 15 min. The solution was stirred at –78 °C for
2 h and allowed to warm to 0 °C. The reaction was quenched
by addition of H2O, the aq phase was separated and extracted
with CH2Cl2. The organic phases were combined, dried over
Na2SO4 and the solvent was removed under vacuum. The
resulting oil was purified by flash chromatography.
Analyses for 6d: Minor diastereoisomer: [ ]D25 –264.1 (c
0.52, CHCl3). Mp = 245 °C (CH2Cl2). IR (KBr): = 3388,
(8) Typical Procedure for Spiro Compounds 7.
To a solution of cyclobutanol 6a–e (1 equiv) in CH2Cl2 (0.05
M) was added concd aq HCl (1.5 equiv). After 9 h at 0 °C,
the solvent was removed under vacuum. The crude product
was redissolved twice in CH2Cl2 and reevaporated to
eliminate trace amount of acid.
Analyses for 7d (cristallyzed from Et2O): [ ]D25 –48.4
(c 1.04, CHCl3). Mp = 140 °C (Et2O). IR (KBr): = 2968,
1750, 1679, 1380, 1347, 780 cm–1. MS (CI, NH3): m/z = 308
(MH+). 1H NMR (400 MHz, CDCl3): = 1.07–1.17 (m, 2
H), 1.34–1.55 (m, 2 H), 1.62 (ddd, J = 6.5, 8.5, 12.3 Hz,
1 H), 1.67 (d, J = 7.0 Hz, 3 H), 1.87 (ddd, J = 9.5, 11.6, 18.9
Hz, 1 H), 1.93 (ddd, J = 6.8, 8.9, 12.3 Hz, 1 H), 2.23 (dd,
J = 6.1, 18.9 Hz, 1 H), 2.43 (dd, J = 6.8, 8.5, 16.8 Hz, 1 H),
2.53 (ddd, J = 6.5, 8.9, 16.8 Hz, 1 H), 6.25 (q, J = 7.1 Hz,
1 H), 7.30–7.60 (m, 4 H), 7.83 (d, J = 9.7 Hz, 1 H), 7.79 (d,
J = 7.6 Hz, 1 H), 8.00 (d, J = 8.3 Hz, 1 H). 13C NMR (75
MHz, CDCl3): = 7.8, 18.9, 29.0, 31.7, 32.3, 35.7, 47.5,
72.3, 124.0, 125.1, 125.9, 126.3, 127.2, 129.1, 129.3, 132.7,
133.9, 136.1, 175.7, 217.0. Anal. Calcd for C20H21NO2: C,
78.15; H, 6.89; N, 4.56. Found: C, 77.96; H, 7.15; N, 4.41.
(9) (a) Kawasaki, K.; Kastsuki, T. Tetrahedron 1997, 53, 6337.
(b) Reddy, K. L.; Dress, K. R.; Sharpless, K. B. Tetrahedron
Lett. 1998, 39, 3667. (c) Takacs, J. M.; Jaber, M. R.;
Vellekoop, A. S. J. Org. Chem. 1998, 63, 2742.
(10) Kukolja, S.; Draheim, S. E.; Pfeil, J. L.; Cooper, R. D. G.;
Graves, B. J.; Holmes, R. E.; Neel, D. A.; Huffman, G. W.;
Webber, J. A.; Kinnick, M. D.; Vasileff, R. T.; Foster, B. J.
J. Med. Chem. 1985, 28, 1886.
(11) Meyers, A. I.; Pointdexter, G. S.; Birch, Z. J. Org. Chem.
1978, 43, 892.
(12) For a review about the memory of chirality: Fuji, K.;
Kawabata, T. Chem.–Eur. J. 1998, 4, 373.
(13) Baussanne, I.; Schwardt, O.; Royer, J.; Pichon, M.; Figadère,
B.; Cavé, A. Tetrahedron Lett. 1997, 39, 845.
(14) Nagasaka, T.; Sato, H.; Seaki, S.-I. Tetrahedron: Asymmetry
1997, 8, 191.
Synlett 2002, No. 10, 1629–1632 ISSN 0936-5214 © Thieme Stuttgart · New York