Organometallics 2003, 22, 901-903
901
Communications
Syn th esis a n d Rea ctivity of Hyd r oxycyclop en ta d ien yl
a n d Am in ocyclop en ta d ien yl Ru th en iu m Alcoh ol
Com p lexes
Charles P. Casey,* Thomas E. Vos, and Galina A. Bikzhanova
Department of Chemistry, University of WisconsinsMadison, Madison, Wisconsin 53706
Received October 18, 2002
Sch em e 1
Summary: Cationic aminocyclopentadienyl and hydroxy-
cyclopentadienyl ruthenium alcohol complexes were
synthesized from reaction of the corresponding ruthen-
ium chloride with AgBF4 in the presence of an alcohol.
Exchange rates of free alcohol with hydroxycyclopenta-
dienyl and aminocyclopentadienyl ruthenium benzyl
alcohol complexes were rapid (t1/ 2 ) 5-10 min) at -47
°C.
Several years ago, Shvo discovered that the diruthen-
ium complex 1 was an efficient ketone hydrogenation
catalyst and determined that the active reducing species
was the ruthenium hydride 2 (Scheme 1).1 On the basis
of detailed mechanistic studies on the related active
reducing agent 3, including observation of primary
deuterium isotope effects for transfer of both OH and
RuH, we proposed a mechanism involving concerted
transfer of proton and hydride to aldehyde outside the
coordination sphere of the metal.2 Ba¨ckvall has proposed
an alternative mechanism involving Cp ring slippage
and aldehyde coordination prior to concerted transfer
of the hydrogens.3 In Ba¨ckvall’s mechanism, the alcohol
is “born” in the coordination sphere of the metal. In our
proposed mechanism, an alcohol complex may form
reversibly after the rate-determining step. Clearly,
information about the kinetic and thermodynamic sta-
bility of alcohol complexes is required to fully under-
stand the mechanism of aldehyde reduction. Park’s
reported isolation of a neutral 2-propanol ruthenium
complex piqued our interest. In the course of investigat-
ing its properties, we and Ba¨ckvall showed that Park’s
“alcohol complex” was in fact an amine complex.4
In an effort to prevent formation of bridging ruthen-
ium hydrides and to develop more active catalysts
related to Shvo’s complex 1, we prepared the N-
phenylamino-substituted cyclopentadienyl complex 5
and found that it reduced benzaldehyde rapidly in the
presence of 1 equiv of added acid (Scheme 2).5,6 Again,
Sch em e 2
the question of alcohol complex involvement arose.
Alcohol complexes have been observed as products of
some ionic hydrogenations of carbonyl compounds by
tungsten, rhenium, and molybdenum hydrides in the
presence of a strong acid.7-9 Other examples of metal
alcohol complexes have been reported,10 but there has
been no report of a ruthenium alcohol complex in the
reduction of ketones and aldehydes by hydroxycyclo-
pentadienyl ruthenium hydride. Here we report the in
situ synthesis of cationic hydroxycyclopentadienyl and
(6) Concurrently, Park made a similar aminocyclopentadienyl ru-
thenium complex which is a racemization catalyst for dynamic kinetic
resolution: Choi, J . H.; Kim, Y. H.; Nam, S. H.; Shin, S. T.; Kim, M.-
J .; Park, J . Angew. Chem., Int. Ed. 2002, 41, 2373.
(7) (a) Song, J .-S.; Szalda, D. J .; Bullock, R. M.; Lawrie, C. J . C.;
Rodkin, M. A.; Norton, J . R. Angew. Chem., Int. Ed. Engl. 1992, 31,
1233. (b) Smith, K.-T.; Norton, J . R.; Tilset, M. Organometallics 1996,
15, 4515. (c) Magee, M. P.; Norton, J . R. J . Am. Chem. Soc. 2001, 123,
1778.
(8) (a) Voges, M. H.; Bullock, R. M. J . Chem. Soc., Dalton Trans.
2002, 759-770. (b) Song, J .-S.; Szalda, D. J .; Bullock, R. M. Organo-
metallics 2001, 20, 3337. (c) Bullock, R. M.; Voges, M. H. J . Am. Chem.
Soc. 2000, 122, 12594.
(1) Blum, Y.; Czarkie, D.; Rahamim, Y.; Shvo, Y. Organometallics
1985, 4, 1459.
(2) Casey, C. P.; Singer, S. W.; Powell, D. R.; Hayashi, R. K.; Kavana,
M. J . Am. Chem. Soc. 2001, 123, 1090.
(3) Persson, B. A.; Larsson, A. L. E.; Le Ray, M.; Ba¨ckvall, J .-E. J .
Am. Chem. Soc. 1999, 121, 1645-1650. Csjernyik, G.; EÄ ll, A. H.; Fadini,
L.; Pugin, B.; Ba¨ckvall, J .-E. J . Org. Chem. 2002, 67, 1657.
(4) Casey, C. P.; Bikzhanova, G. A.; Ba¨ckvall, J .-E.; J ohansson, L.;
Park, J .; Kim, Y. H. Organometallics 2002, 21, 1955-1959.
(5) Casey, C. P.; Vos, T. E.; Singer, S. W.; Guzei, I. A. Organome-
tallics 2002, 21, 5038.
(9) Bakhmutov, V. I.; Vorontsov, E. V.; Antonov, D. Yu. Inorg. Chim.
Acta 1998, 278, 122.
(10) (a) Milke, J .; Missling, C.; Su¨nkel, K.; Beck, W. J . Organomet.
Chem. 1993, 445, 219. (b) Song, J . S.; Szalda, D. J .; Bullock, R. M.;
Lawrie, C. J . C.; Rodkin, M. A.; Norton, J . R. Angew. Chem., Int. Ed.
Engl. 1992, 31, 1233. (c) Field, J . S.; Haines, R. J .; Sundermeyer, J .;
Woollam, S. F. Chem. Commun. 1990, 985. (d) Agbossou, S. K.; Smith,
W. W.; Gladysz, J . A. Chem. Ber. 1990, 123, 1293. (e) Sahajpal, A.;
Robinson, S. D.; Mazid, M. A.; Motevalli, M.; Hursthouse, M. B. J .
Chem. Soc., Dalton Trans. 1990, 2119. (f) Su¨nkel, K.; Urban, G.; Beck,
W. J . Organomet. Chem. 1985, 290, 231.
10.1021/om020891e CCC: $25.00 © 2003 American Chemical Society
Publication on Web 01/31/2003