chlorodiene side chain would next take advantage of the
Evans tactic involving addition of a fully elaborated allyl-
stannane 5 to a C(42)-C(43) epoxide. Completion of the
synthesis of 1 would then entail TMS protection of the C(41,
42, and 47) hydroxyls, generation of the Wittig phosphonium
salt, union with the advanced ABCD fragment (-)-4,12
regioselective macrolactonization, and global deprotection.
Preparation of the requisite F-ring aldehyde 7 (Scheme 2)
began with a Brown asymmetric crotylboration13 of aldehyde
(-)-914 to furnish homoallylic alcohol (-)-10; the diaste-
reoselectivity was excellent (>20:1). Subsequent benzylation
and acidic removal of the acetonide generated diol (-)-11;
the overall yield for the three steps was 55%. Selective
sulfonation of the primary hydroxyl with 2,4,6-triisopropyl-
benzenesulfonyl chloride (TrisCl), followed by protection of
the secondary hydroxyl as the PMB ether15 afforded alkene
(+)-12. Sharpless asymmetric dihydroxylation16 then led to
an intermediate diol, which upon treatment with NaOMe
achieved ring closure to afford tetrahydropyran (+)-13 in
85% yield (dr, 6:1). Parikh-Doering17 oxidation completed
construction of the C(38)-C(43) tetrahydropyran (+)-7.
Scheme 1
Scheme 2
Crimmins9 have also achieved successful total syntheses in
this area.
The spongistatins possess a striking array of structural
features, including a 42-membered macrolactone incorporat-
ing two spiroketals, a hemiketal, and a tetrahydropyran,
which is subtended by a highly unsaturated side chain. Hav-
ing recently achieved a preparatively useful synthesis of the
advanced ABCD fragment (-)-4,12 we turned to a second-
generation synthesis of the C(29)-C(51) EF Wittig salt (+)-
3. Our strategy called for three subunits 5, 7, and 8. On the
basis of our first-generation syntheses, we envisioned a chela-
tion-controlled addition of known dithiane 811 to F-ring al-
dehyde 7, followed by removal of the acetonide and dithiane
with in situ hemiketalization would provide the EF bis-pyran
6 with the requisite C(38) stereogenicity. Installation of the
As anticipated, efficient fragment union was achieved in
a highly stereocontrolled fashion (>20:1; 51% yield; Scheme
3) via treatment of the cerium anion generated from dithiane
(-)-8 with a premixed solution of aldehyde (+)-7 and zinc
chloride.18 Acidic removal of the acetonide (CSA, MeOH/
H2O, 86%) in (+)-14, followed by dithiane removal employ-
ing the conditions of Fujita19 [Hg(ClO4)2, CaCO3, CH3CN/
H2O, 95%], with concomitant hemiketal formation then
afforded (+)-15 possessing the E and F rings. Selective
protection of the sterically more accessible C(35) hydroxyl
(7) (a) Smith, A. B., III; Doughty, V. A.; Lin, Q.; Zhuang, L.; McBriar,
M. D.; Boldi, A. M.; Moser, W. H.; Murase, N.; Nakayama, K.; Sobukawa,
M. Angew. Chem., Int. Ed. 2001, 40, 191. (b) Smith, A. B., III; Lin, Q.;
Doughty, V. A.; Zhuang, L.; McBriar, M. D.; Kerns, J. K.; Brook, C. S.;
Murase, N.; Nakayama, K. Angew. Chem., Int. Ed. 2001, 40, 196.
(8) Paterson, I.; Chen, D. Y.-K.; Coster, M. J.; Acen˜a, J. L.; Bach, J.;
Gibson, K. R.; Keown, L. E.; Oballa, R. M.; Trieselmann, T.; Wallace, D.
J.; Hodgson, A. P.; Norcross, R. D. Angew. Chem., Int. Ed. 2001, 40, 4055.
(9) Crimmins, M. T.; Katz, J. D.; Washburn, D. G.; Allwein, S. P.;
McAtee, L. F. J. Am. Chem. Soc. 2002, 124, 5661.
(10) For synthetic approaches to the spongistatins, see refs 5-9 and
references therein.
(11) Smith, A. B., III; Zhuang, L.; Brook, C. S.; Boldi, A. M.; McBriar,
M. D.; Moser, W. H.; Murase, N.; Nakayama, K.; Verhoest, P. R.; Lin, Q.
Tetrahedron Lett. 1997, 38, 8667.
(13) Brown, H. C.; Bhat, K. S. J. Am. Chem. Soc. 1986, 108, 5919.
(14) Hubschwerlen, C. Synthesis 1986, 962.
(15) Nakajima, N.; Horita, K.; Abe, R.; Yonemitsu, O. Tetrahedron Lett.
1988, 29, 4139.
(16) Crispino, G. A.; Jeong, K.-S.; Kolb, H. C.; Wang, Z.-M.; Xu, D.;
Sharpless, K. B. J. Org. Chem. 1993, 58, 3785.
(17) Parikh, J. R.; Doering, W. V. E. J. Am. Chem. Soc. 1967, 89, 5505.
(18) The use of cerium chloride serves to suppress enolization; see:
Imamoto, T.; Takiyama, N.; Nakamura, K.; Hatajima, T.; Kamiya, Y. J.
Am. Chem. Soc. 1989, 111, 4392.
(12) Smith, A. B. III; Doughty, V. A.; Sfouggatakis, C.; Bennett, C. S.;
Koyanagi, J.; Takeuchi, M. Org. Lett. 2002, 4, 783.
(19) Fujita, E.; Nagao, Y.; Kaneko, K. Chem. Pharm. Bull. 1978, 26,
3743.
762
Org. Lett., Vol. 5, No. 5, 2003