likely occurred by formation of a silacarbonyl ylide (5),
which then underwent a 6π electrocyclization to provide
oxasilacyclopentene 6 (Scheme 1). This intermediate contains
The key step in our initial synthetic plan involved a silyl-
ene transfer/Ireland-Claisen rearrangement with all of the
stereochemistry of the target controlled by the allylic stereo-
center (Scheme 2). Disconnection of (+)-5-epi-acetomycin
Scheme 1. Controlling Quaternary Carbon Stereochemistry
Scheme 2. Acetomycin Retrosynthesis
a tetrasubstituted silyl ketene acetal moiety embedded within
the ring. At ambient temperature, oxasilacyclopentene 6
underwent an Ireland-Claisen rearrangement to afford
silalactone 7 with high diastereoselectivity and the formation
of an all-carbon quaternary center. The stereochemistry of
the product can be explained by a chairlike transition state
in which the isopropyl substituent adopts an equatorial
position.9
We chose to highlight the synthetic utility of the silylene
transfer/Ireland-Claisen rearrangement in the enantioselec-
tive synthesis of (+)-5-epi-acetomycin (8). This compound
is an anologue of (-)-acetomycin because the two com-
pounds differ only in the configuration at the acetal stereo-
center. Acetomycin is an antibiotic that was isolated from
Streptomyces ramulosus by Prelog and co-workers in 1958.10
The structure and the relative and absolute configurations
were later determined by X-ray crystallography.11,12 In
addition to showing antibacterial properties, this compound
has also demonstrated in vitro antitumor activity.13-15 Several
syntheses of acetomycin and its analogues have been
undertaken.6,15-22
at the acetal center provides an aldehyde, which would be
formed by ozonolysis of keto acid 9. The acetyl group of keto
acid 9 could arise by oxidation of silalactone 10, which could
be obtained from silylene transfer/Ireland-Claisen rearrange-
ment of ester 11 through a chairlike transition state. Because
the Ireland-Claisen rearrangement of trans-allylic ester 1 pro-
vided compound 3, the cis-ester 11 should provide the oppo-
site stereochemistry at the new allylic center in silalactone
10.8b
The silylene transfer/Ireland-Claisen rearrangement of a
cis-substituted R,â-unsaturated allylic ester was slow and
occurred with low stereoselectivity. Treatment of ester 12,
formed in two steps from tiglic acid, under the silylene
transfer conditions afforded an inseparable mixture of
silalactones 14 and 15 (Scheme 3). Silalactone 15 resulted
Scheme 3. Lack of Reactivity and Diastereoselectivity
(8) For examples of chirality transfer from secondary allylic alcohols in
the Claisen rearrangement, see: (a) Hill, R. K.; Edwards, A. G. Tetrahedron
Lett. 1964, 5, 3239-3243. (b) Chan, K.-K.; Cohen, N.; De Noble, J. P.;
Specian, A. C., Jr.; Saucy, G. J. Org. Chem. 1976, 41, 3497-3505. (c)
Ziegler, F. E. Chem. ReV. 1988, 88, 1423-1452.
(9) Faulkner, D. J.; Petersen, M. R. Tetrahedron Lett. 1969, 3243-3246.
(10) Ettlinger, L.; Gaumann, E.; Hutter, R.; Keller-Schierlein, W.;
Kradolfer, F.; Neipp, L.; Prelog, V.; Zahner, H. HelV. Chim. Acta 1958,
41, 216-219.
(11) Uhr, H.; Zeeck, A.; Clegg, W.; Egert, E.; Fuhrer, H.; Peter, H. H.
J. Antibiot. 1985, 38, 1684-1690.
(12) Cano, F. H.; Foces-Foces, C.; Elguero, J. Acta Crystallogr., Sect.
C.: Cryst. Struct. Commun. 1988, C44, 919-921.
(13) Mamber, S. W.; Mitulski, J. D.; Hamelehle, K. L.; French, J. C.;
Hokanson, G. C.; Shillis, J. L.; Leopold, W. R.; Von Hoff, D. D.; Tunac,
J. B. J. Antibiot. 1987, 40, 73-76.
from hydrolysis of intermediate silyl ketene acetal 13 before
the Ireland-Claisen rearrangement occurred. Upon pro-
longed standing at ambient temperature, the yield of desired
(14) Mamber, S. W.; Mitulski, J. D.; Borondy, P. E.; Tunac, J. B. J.
Antibiot. 1987, 40, 77-80.
(15) Chen, D.; Sprules, T. J.; Lavalle´e, J.-F. Bioorg. Med. Chem. Lett.
1995, 5, 759-762.
(16) Uenishi, J.; Okadai, T.; Wakabayashi, S. Tetrahedron Lett. 1991,
32, 3381-3384.
(18) Ishihara, J.; Tomita, K.; Tadano, K.-i.; Ogawa, S. J. Org. Chem.
1992, 57, 3789-3798.
(19) Ziegler, F. E.; Kim, H. Tetrahedron Lett. 1993, 34, 7669-7672.
(20) Sprules, T. J.; Lavalle´e, J.-F. J. Org. Chem. 1995, 60, 5041-5047.
(17) Echavarren, A. M.; de Mendoza, J.; Prados, P.; Zapata, A.
Tetrahedron Lett. 1991, 32, 6421-6424.
1038
Org. Lett., Vol. 9, No. 6, 2007