in various observations cited in the prior art. The feasibility
of engaging acrylate esters in productive cross metathesis
has been recognized for some time.8 Correspondingly,
examples of the involvement of R,â-unsaturated esters in
RCM are rather numerous.9 In contrast, acrylonitrile is a
substituted alkene that has eluded virtually all attempts to
effect comparable reaction.10 No examples of the participa-
tion of R,â-unsaturated nitriles in RCM have consequently
been reported, even when the cyano functionality is situated
on the terminus of a 1,3-diene.11 Conjugated amides appear
to enjoy an intermediate position.12 The ability of R,â-
unsaturated ketones to exhibit comparable high performance
behavior has surfaced only recently,13 chiefly as the result
of improved catalyst design.
Enol ethers14a and enamides14b have been reported not to
undergo RCM when exposed to 1. In fact, ethyl vinyl ether
has been utilized to terminate living ROMP reactions.15 These
phenomena have been attributed to the ability of ruthenium
alkylidenes to generate metathesis-inactive Fischer carbenes
such as 3 under these circumstances.16 This transformation
is quantitative and essentially irreversible.17 For this reason,
recourse has been made to other catalysts such as 4 and 5 in
order to provide an alternate driving force for RCM in such
cases.18
In light of these developments, a systematic investigation
of the relative rates of RCM of a series of dienes of type 6
has been undertaken to allow for proper comparative analysis.
Use has been made of the highly active N-heterocyclic
carbene-coordinated metathesis catalyst 219 in order to
address steric and electronic effects that might affect this
particular promoter.20 Our guidelines provide not only for
attachment of an R- or p-XC6H4- group directly to a
reacting double bond but also for generation of the identical
product 7 in every instance.21
(6) (a) Paquette, L. A.; Ra, C. S.; Schloss, J. D.; Leit, S. M.; Gallucci,
J. C. J. Org. Chem. 2001, 66, 3564. (b) Paquette, L. A.; Leit, S. M. J. Am.
Chem. Soc. 1999, 121, 8126.
(7) (a) Hoye, T. R.; Zhao, H. Org. Lett. 1999, 1, 1123. (b) Kirkland, T.
A.; Grubbs, R. H. J. Org. Chem. 1997, 62, 7310.
(8) Ivin, K. J.; Mol, J. C. Olefin Metathesis and Metathesis Polymeri-
zation; Academic Press: New York, 1997.
(9) (a) Ghosh, A. K.; Lei, H. J. Org. Chem. 2000, 65, 4779. (b) Ghosh,
A. K.; Cappiello, J.; Shin, D. Tetrahedron Lett. 1998, 39, 4651. (c) Nicolaou,
K. C.; Rodriguez, R. M.; Mitchell, H. J.; Suzuki, H.; Fylaktakidou, C.;
Baudouin, O.; Delft, F. L. van, Chem. Eur. J. 2000, 6, 3095. (d) Cossy, J.;
Bauer, D.; Bellosta, V. Tetrahedron Lett. 1999, 40, 4187. (e) Bassindale,
M. J.; Hamley, P.; Leitner, A.; Harrity, J. P. A. Tetrahedron Lett. 1999,
40, 3247. (f) Fu¨rstner, A.; Thiel, O. R.; Ackermann, L.; Schanz, H.-J.; Nolan,
S. P. J. Org. Chem. 2000, 65, 2204. (g) Ramachandran, P. V.; Reddy, M.
V. R.; Brown, H. C. Tetrahedron Lett. 2000, 41, 583. (h) Brouard, I.;
Hanxing, L.; Martin, J. D. Synthesis 2000, 883. (i) Ghosh, A. K.; Bilcer,
G. Tetrahedron Lett. 2000, 41, 1003. (j) Greer, P. B.; Donaldson, W. A.
Tetrahedron Lett. 2000, 41, 3801.
(14) (a) Fujimura, O.; Fu, G. C.; Grubbs, R. H. J. Org. Chem. 1994, 59,
4029. (b) Kinderman, S. S.; van Maarseveen, J. H.; Schoemaker, H. E.;
Hiemstra, H.; Rutjes, F. P. J. T. Org. Lett. 2001, 3, 2045.
(15) Steltzer, F. J. Macromol. Sci. Pure Appl. Chem. 1996, A33, 941.
(16) (a) Wu, Z.; Nguyen, S. T.; Grubbs, R. H.; Ziller, J. W. J. Am. Chem.
Soc. 1995, 117, 5503. (b) Lynn, D. M.; Mohr, B.; Grubbs, R. H.; Henling,
L. M.; Day, M. W. J. Am. Chem. Soc. 2000, 122, 6601.
(17) Sanford, M. S.; Ulman, M.; Grubbs, R. H. J. Am. Chem. Soc. 2001,
123, 749.
(10) Crowe, W. E.; Goldberg, D. R. J. Am. Chem. Soc. 1995, 117, 5162.
(11) Basu, K.; Cabral, J. A.; Paquette, L. A. Tetrahedron Lett. 2002, 43,
5453.
(12) (a) Fu, G. C.; Nguyen, S. T.; Grubbs, R. H. J. Am. Chem. Soc.
1993, 115, 9856. (b) Rutjes, F. P. J. T.; Schoemaker, H. E. Tetrahedron
Lett. 1997, 38, 677. (c) Grossmith, C. E.; Senia, F.; Wagner, J. Synlett 1999,
1660. (d) Agami, C.; Couty, F.; Rabasso, N. Tetrahedron Lett. 2000, 41,
4113. (e) Martin, S. F.; Follows, B. C.; Hergenrother, P. J.; Franklin, C. L.
J. Org. Chem. 2000, 65, 4509.
(18) (a) Rainier, J. D.; Allwein, S. P. J. Org. Chem. 1998, 63, 5310. (b)
Nicolaou, K. C.; Postema, M. H. D.; Claiborne, C. F. J. Am. Chem. Soc.
1996, 118, 1565.
(19) (a) Scholl, M.; Trnka, T. M.; Morgan, J. P.; Grubbs, R. H.
Tetrahedron Lett. 1999, 40, 2247. (b) Scholl, M.; Ding, S.; Lee, C. W.;
Grubbs, R. H. Org. Lett. 1999, 1, 953.
(20) Ruthenium catalyst 2 is recognized to alleviate certain limitations
brought on by substitution and to promote the metathesis of vinyl siloxanes
and fluorinated alkenes.
(13) (a) Efremov, I.; Paquette, L. A. J. Am. Chem. Soc. 2000, 122, 9324.
(b) Morgan, J. P.; Grubbs, R. H. Org. Lett. 2000, 2, 3153. (c) Paquette, L.
A.; Efremov, I. J. Am. Chem. Soc. 2001, 123, 4492.
(21) Presence of the remotely positioned benzyloxy substitutent is
purposeful. In this way, the volatility of the reactant and particularly the
product is reduced sufficiently to facilitate quantitation of the process.
790
Org. Lett., Vol. 5, No. 6, 2003