C O M M U N I C A T I O N S
Table 4. Regiocontrolled Stille Couplings with Other Stannanesa
In summary, we have found that 3,5-dibromo-2-pyrone undergoes
Stille coupling reactions regioselectively at either C3 or C5,
depending on the reaction conditions. The preferred formation of
the Pd intermediate 6 and its higher reactivity would account for
the regioselective substitutions at C5 when the Stille couplings are
conducted under condition B. Further study is underway to elucidate
the exact nature of the Cu(I) effect on the oxidative addition of
Pd(0) in a polar solvent.
Acknowledgment. We thank the financial support of Korea
Health 21 R&D (01-PJ1-PG1-01CH03-0003) and Center for
Bioactive Molecular Hybrid. We also thank Professor M. S. Lah
for the X-ray crystallographic study. K.W.S. and K.H.J. thank the
BK21 fellowship.
Supporting Information Available: Spectral data for 2a-2j,
3a-3j, 5a, 5b, and 6 (PDF) and X-ray structures of 5a, 5b, and 6 in
CIF format.This material is available free of charge via the Internet at
References
(1) (a) Milstein, D.; Stille, J. K. J. Am. Chem. Soc. 1978, 100, 3636. (b) Stille,
J. K. Angew. Chem., Int. Ed. Engl. 1986, 25, 508. (c) Farina, V.; Roth,
G. P. AdVances in Metal-Organic Chemistry; Liebeskind, L. S., Ed.; JAI
Press: Greenwich, 1996; Vol. 5, p 1. (d) Farina, V.; Krishnamurthy, V.;
Scott, W. J. Org. React. 1997, 50, 1-652. (e) Mitchell, T. N. In Metal-
catalyzed Cross-coupling Reactions; Diederich, F., Stang, P. J., Eds.;
Wiley-VCH: New York, 1998; Chapter 4. (f) Amatore, C.; Bahsoun, A.
A.; Jutand, A.; Meyer, G.; Ntepe, A. N.; Ricard, L. J. Am. Chem. Soc.
2003, 125, 4212.
a A: Pd(PPh3)4/CuI (0.1 equiv)/PhMe/100 °C, B: Pd(PPh3)4/CuI (1.0
equiv)/DMF/50 °C, C: Pd2dba3/P(t-Bu)3/PhMe/rt2.
(2) Littke, A. F.; Schwarz, L.; Fu, G. J. Am. Chem. Soc. 2002, 124, 6343.
(3) Liebeskind, L. S.; Fengl, R. W. J. Org. Chem. 1990, 55, 5359.
Table 5. Regiocontrolled Oxidative Additions
(4) (a) Allred, G. D.; Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748.
(b) Barchin, B. M.; Valenciano, J.; Cuadro, A. M. Alvarez-Builla, J.;
Vaquero, J. J. Org. Lett. 1999, 1, 545.
(5) Farina, V.; Kapadia, S.; Krishnan, B.; Wang, C.; Liebeskind, L. S. J. Org.
Chem. 1994, 59, 5905.
(6) (a) Piers, E.; Wong, T. J. Org. Chem. 1993, 58, 3609. (b) Falck, J. R.;
Bhatt, R. K.; Ye, J. J. Am. Chem. Soc. 1995, 117, 5973. (c) Allred, G. D.;
Liebeskind, L. S. J. Am. Chem. Soc. 1996, 118, 2748.
entry
conditions
toluene/100 °C
toluene/CuI(1.0 equiv)/100 °C
DMF/50 °C
ratio (5:6)12
1
2
3
4
100:0
100:0
100:0
30:70
(7) (a) Lee, J.-H.; Park, J.-S.; Cho, C.-G. Org. Lett. 2002, 4, 1171. (b) Lee,
J.-H.; Kim, W.-S.; Lee, Y. Y.; Cho, C.-G. Tetrahedron. Lett. 2002, 43,
5779. (c) Kim, W.-S.; Kim, H.-J.; Cho, C.-G. Tetrahedron Lett. 2002,
43, 9015 (d) Lee, J.-H.; Cho, C.-G. Tetrahedron Lett. 2003, 44, 65.
DMF/CuI(1.0 equiv)/50 °C
(8) 2a and 3a produced 7a-endo and 8a-endo, respectively, upon cycload-
ditions with methyl acrylate. The cycloadduct from the cycloaddition of
1 with methyl acrylate has been shown to undergo the coupling reaction
with phenyl tributyltin at the vinyl bromide position to give 8a-endo:
Lee, H.-S.; Kim, D.-S.; Won, H.; Choi, J. H.; Lee, H.; Cho, C.-G.
Tetrahedron Lett. 2002, 43, 5591.
A set of control experiments demonstrated that it is the favorable
oxidative addition of “PdL2” at C5, together with higher reactivity
of the resulting Pd intermediate 6 (vide infra) that determines the
regiochemical outcome under condition B. Table 5 summarizes the
effects of solvent and CuI on the regiochemistry of the oxidative
adducts. Heating in toluene without CuI provided exclusively 5a
(entry 1), accompanied with small amount 5b formed from the
halogen exchange on Pd when CuI was added (entry 2), with no
traceable 6 in either case. In DMF, CuI plays a decisive role,
providing mainly 6 under the conditions representing the actual
catalytic conditions (entry 4). The palladium complexes 5a, 5b,
and 6 are sufficiently stable for the silica gel column chromatog-
raphy and subsequent recrystallization for X-ray crystallography.
The isolated 5a produced 2a in 91% yield when reacted with
phenyltributyltin, while the same reaction with 6 provided 3a in
99% yield.
(9) 2d: 3-(2-furyl)-5-Br-2-pyrone, 3d: 5-(2-furyl)-3-Br-2-pyrone.
(10) The initially formed coupling product underwent dimerization via a Diels-
Alder cycloaddition during the column chromatography.
(11) (a) Louie, J.; Hartwig, J. F. J. Am. Chem. Soc. 1995, 117, 11598. (b)
Casado, A. L.; Espinet, P. J. Am. Chem. Soc. 1998, 120, 8978. (c) Cotter,
W. D.; Barbour, L.; McNamara, K. L.; Hechter, R.; Lachicotte, R. J. J.
Am. Chem. Soc. 1998, 120, 11016. (d) Roy, A. H.; Hartwig, J. F. J. Am.
Chem. Soc. 2001, 123, 1232. (e) Ricci, A.; Angelucci, F.; Bassetti, M.;
Sterzo, C. L. J. Am. Chem. Soc. 2002, 124, 1060. (f) Ghosh, I.; Jacobi, P.
A. J. Org. Chem. 2002, 67, 9304.
The Pd intermediate 6 undergoes much faster coupling reaction
than 5; an equimolar mixture of 5a (or 5b), 6, and phenyltributyltin
provided exclusively 3a in quantitative yield after 30 min at 50 °C
in DMF (5a or 5b remained intact). Similar regiochemical outcomes
were obtained when CuBr was used in lieu of CuI, excluding the
possible involvement of iodine in the reaction.
(12) The ratio was determined by 1H NMR spectroscopy and isolation.
JA037043A
9
J. AM. CHEM. SOC. VOL. 125, NO. 47, 2003 14289