Dynamic Kinetic Resolution of Benzoins
TABLE 1. Substrates of the Enzymatic Kinetic Resolution
substrates
products
1a
1b
Ar ) Ph
(R)-(-)-1a
(R)-(-)-1b
(S)-(+)-2a: Ar ) Ph; R ) -CH3
(S)-(+)-2b: Ar ) Ph; R ) -C3H7
Ar ) 2-furanyl
(S)-(+)-2c: Ar ) 2-furanyl; R ) -CH3
(S)-(+)-2d: Ar ) 2-furanyl; R ) -C3H7
(S)-(+)-2e: Ar ) 3-furanyl; R ) -CH3
(S)-(+)-2f: Ar ) 2-thienyl; R ) -CH3
(S)-(+)-2g: Ar ) 2-thienyl; R ) -C3H7
(S)-(+)-2h: Ar ) 3-thienyl; R ) -C3H7
(S)-(+)-2i: Ar ) 4-MeOC6H4-; R ) -C3H7
(S)-(+)-2j: Ar ) 4-EtOC6H4-; R ) -C3H7
1c
1d
Ar ) 3-furanyl
Ar ) 2-thienyl
(R)-(-)-1c
(R)-(-)-1d
1e
1f
1g
Ar ) 3-thienyl
Ar ) 4-MeOC6H4
Ar ) 4-EtOC6H4
(R)-(-)-1e
(R)-(-)-1f
(R)-(-)-1g
benzaldehyde lyase (BAL). Other biocatalytical methods for the
synthesis of enantiomerically pure benzoins are the enantiose-
lective reduction of R-diketones11 and the fungal deracemiza-
tion12 or lipase-catalyzed kinetic resolution of racemic benzoin.13
enantioselective acylation, as well as the combination of this
process with a ruthenium-catalyzed substrate racemization,
obtaining the homochiral acylated products in higher yields
through a DKR process.
Despite the progress in asymmetric synthesis, the dominant
production method to obtain a single enantiomer in industrial
synthesis is based on the kinetic resolution of racemates.14
However, an important drawback of kinetic resolutions (KR)
is the intrinsic limitation of the maximum theoretical yield at
50%. Under some circumstances, it is possible to obtain a yield
of 100% by carrying out substrate racemization under the
resolution conditions in a dynamic kinetic resolution (DKR)
process.15 For this purpose, one of the best methods to obtain
enantiomerically pure secondary alcohols is to combine an
enzymatic resolution with a transition-metal-mediated catalyzed
racemization via hydrogen transfer.16 Nevertheless, the first basic
requirement for an efficient DKR is to identify an effective KR.
Thus, in this work we report both a convenient enzymatic kinetic
resolution of racemic benzoins by means of a lipase-catalyzed
Results and Discussion
Some of the substrates employed in the enzymatic resolution
(shown in Table 1), such as benzoin (1a), 2-furoin (1b), and
4,4′-dimethoxybenzoin (1f), are commercially available. 3-Fu-
roin (1c) and 4,4′-diethoxybenzoin (1g) were synthesized
following the methodology previously described by our group.10e
2,2′-Thenoin (1d) and 3,3′-thenoin (1e) were also synthesized
following a classical benzoin condensation through a more
simple procedure than that described by Roberts-Bleming et
al.,17 reaching similar yields as those described but employing
a much easier workup protocol, as described in the Experimental
Section.
The racemic acylated products were also chemically synthe-
sized in order to identify the kinetic resolution products by
comparison with their HPLC retention times and UV spectra,
except those esters of 3-furoin (1c), as their extreme lability, as
described,10e avoids the preparation of the standards.
Various commercial lipase preparations, either immobilized
or crude enzyme powder, were tested for the transesterification
process, using racemic benzoin 1a as the standard substrate.
The lipases were tested using different solvents and tempera-
tures, and vinyl acetate as acyl donor, following the methodology
described by Aoyagi et al.13b Because of the low solubility of
1a in the low polarity organic solvents usually employed in
lipase-catalyzed transesterifications, some different lipase prepa-
rations (immobilized lipases from Candida antarctica B, Ther-
momyces laenuginosus, and Rhizomucor miehei, lipase from
Pseudomonas cepacia, and Lipase TL from Pseudomonas
stutzeri) were tested in tBuOMe, chloroform, and THF, solvents
with a low value of log P (lower than 2), which are generally
considered harmful for the lipase catalysis.18
(10) (a) Demir, A. S.; Du¨nwald, T.; Iding, H.; Pohl, M.; Mu¨ller, M.
Tetrahedron: Asymmetry 1999, 10, 4769-4774. (b) Demir, A. S.; Pohl,
M.; Janzen, E.; Mu¨ller, M. J. Chem. Soc., Perkin Trans. 1 2001, 633-635.
(c) Demir, A. S.; Sesenoglu, O¨ .; Eren, E.; Hosrik, B.; Pohl, M.; Janzen, E.;
Kolter, D.; Feldmann, R.; Du¨nkelmann, P.; Mu¨ller, M. AdV. Synth. Catal.
2002, 344, 96-103. (d) Dunkelmann, P.; Kolter-Jung, D.; Nitsche, A.;
Demir, A. S.; Siegert, P.; Lingen, B.; Baumann, M. J. Am. Chem. Soc.
2002, 124, 12084-12085. (e) Hischer, T.; Gocke, D.; Ferna´ndez, M.; Hoyos,
P.; Alca´ntara, A. R.; Sinisterra, J. V.; Hartmeier, W.; Ansorge-Schumacher,
M. B. Tetrahedron 2005, 61, 7378-7383. (f) Dom´ınguez de Mar´ıa, P.;
Stillger, T.; Pohl, M.; Wallert, S.; Drauz, K.; Gro¨ger, H.; Trauthwein, H.;
Liese, A. J. Mol. Catal. B: Enzym. 2006, 38, 43-47.
(11) (a) Buisson, D.; Baba, S. E.; Azerad, R. Tetrahedron Lett. 1986,
27, 4453-4454. (b) Maruyama, R.; Nishizawa, M.; Itoi, Y.; Ito, S.; Inoue,
M. J. Biotechnol. 2002, 94, 157-169. (c) Saito, T.; Maruyama, R.; Ono,
S.; Yasukawa, N.; Kodaira, K.; Nishizawa, M.; Ito, S.; Inoue, M. Appl.
Biochem. Biotechnol. 2003, 111, 185-190. (d) Mahmoodi, N. O.; Moham-
madi, H. G.. Monatsh. Chem. 2003, 134, 1283-1288. (e) Demir, A. S.;
Hamamci, H.; Ayhan, P.; Duygu, A. N.; Igdir, A. C.; Capanoglu, D.
Tetrahedron: Asymmetry 2004, 15, 2579-2582.
(12) Demir, A. S.; Hamamci, H.; Sesenoglu, O.; Neslihanoglu, R.;
Asikoglu, B.; Capanoglu, D. Tetrahedron Lett. 2002, 43, 6447-6449.
(13) (a) Aoyagi, Y.; Agata, N.; Shibata, N.; Horiguchi, M.; Williams,
R. M. Tetrahedron Lett. 2000, 41, 10159-10162. (b) Aoyagi, Y.; Iijima,
A.; Williams, R. M. J. Org. Chem. 2001, 66, 8010-8014.
(14) . Ghanem, A.; Aboul-Enein, H. Y. Chirality 2005, 17, 1-15 and
references therein.
(15) (a) Stecher, H.; Faber, K. Synthesis 1997, 1-17. (b) El Gihani, M.
T.; Williams, J. M. J. Curr. Opin. Biotechnol. 1999, 3, 11-15. (c) Faber,
K. Chem. Eur. J. 2001, 7, 5004-5010. (d) Pa´mies, O.; Ba¨ckvall, J. E. Trends
Biotechnol. 2004, 22, 130-135.
(16) (a) Kim, M. J.; Ahn, Y.; Park, J. Curre. Opin. Biotechnol. 2002,
13, 578-587. (b) Kim, M. J.; Chung, Y.; Choi, Y. K.; Lee, H. K.; Kim,
D.; Park, J. J. Am. Chem. Soc. 2003, 125, 11494-11495. (c) Pa´mies, O.;
Ba¨ckvall, J. E. Curr. Opin. Biotechnol. 2003, 14, 407-413. (d) Mart´ın-
Matute, B.; Edin, M.; Boga´r, K.; Ba¨ckvall, J. E. Angew. Chem., Int. Ed.
2004, 43, 6535-6539. (e) Mart´ın-Matute, B.; Edin, M.; Boga´r, K.; Kaynak,
F. B.; Ba¨ckvall, J. E. J. Am. Chem. Soc. 2005, 127, 8817-8825.
(17) Roberts-Bleming, S. J.; Davies, G. D.; Kajali, M.; Murphy, P. J. J.
Org. Chem. 2003, 68, 7115-7118.
J. Org. Chem, Vol. 71, No. 20, 2006 7633