J. E. Moore et al. / Tetrahedron Letters 45 (2004) 3189–3191
3191
6. Li, W.; Yun, L.; Wang, H. Synth. Commun. 2002, 32,
€
Acknowledgements
2657; For an excellent review see: Lidstrom, P.; Tierney,
J.; Wathey, B.; Westman, J. Tetrahedron 2001, 57, 9225.
7. (a) Schwesinger, R.; Wiharedt, J.; Schlemper, H.; Keller,
M.; Schmitt, D.; Fritz, H. Chem. Ber. 1994, 127, 2435; (b)
Xu, W.; Mohan, R.; Morrissey, M. M. Bioorg. Med.
Chem. Lett. 1998, 8, 1089; (c) Habermann, J.; Ley, S. V.;
Scott, J. S. J. Chem. Soc., Perkin Trans. 1 1999, 1253.
8. Microwave promoted reactions were carried out using an
Emryse Optimiser EXP instrument with ‘Fixed Hold
Time’ set to ‘Off ’ and ‘Absorption Level’ set to ‘High’.
Representative experimental procedure: The starting bromo-
isoxazole 1a (0.20 g, 0.98 mmol) was weighed into a
microwave process vial. ps-BEMP (0.45 g, 1.0 mmol),
acetonitrile (0.5 mL) and piperidine (0.97 mL, 9.8 mmol)
were added sequentially. The vial was sealed and irradi-
ated in the microwave (200 °C, 900 s, 9 bar). The vial was
cooled to room temperature and the ps-BEMP filtered off.
The filtrate was concentrated in vacuo and purified by flash
column chromatography (eluting solvent 4:1:0.1
heptane:ethyl acetate:triethylamine) to give aminoisoxaz-
ole 2 as a yellow oil wt. 0.120 g, 57% yield. 1H NMR
(400 MHz, CDCl3): d 0.93 (3H, t, J ¼ 7:28 Hz), d 1.33–
1.48 (2H, m), d 1.56–1.68 (8H, m), d 2.61 (2H, t,
J ¼ 7:53 Hz), d 3.22–3.31 (4H, m), d 5.6 (1H, s). 13C
NMR (62.9 MHz, CDCl3) d: 13.7, 22.2, 24.2, 25.1, 26.8,
We gratefully acknowledge funding from the EPSRC
and Organon and Dr. Mark York for helpful discus-
sions.
References and notes
1. (a) Davies, M. W.; Johnson, C. N.; Harrity, J. P. A. Chem.
Commun. 1999, 2107; (b) Davies, M. W.; Johnson, C. N.;
Harrity, J. P. A. J. Org. Chem. 2001, 66, 3525; (c) Davies,
M. W.; Wybrow, R. A. J.; Johnson, C. N.; Harrity, J. P.
A. Chem. Commun. 2001, 1558.
2. Moore, J. E.; Goodenough, K. M.; Spinks, D.; Harrity,
J. P. A. Synlett 2002, 2071.
3. Amination reactions of 3-chlorobenzisoxazole derivatives
have been reported: (a) Yevich, J. P.; New, J. S.; Smith, D.
W.; Lobeck, W. G.; Catt, J. D.; Minielli, J. L.; Eison, M.
S.; Taylor, D. P.; Riblet, L. A.; Temple, D. L. J. Med.
Chem. 1986, 29, 359; (b) Boeshagen, H. Chem. Ber. 1967,
100, 3326; (c) Wagner, E.; Becan, L. Pol. J. Chem. 1995,
69, 70; (d) Villalobos, A.; Blake, J. F.; Biggers, C. K.;
Butler, T. W.; Chapin, D. S.; Chen, Y. L.; Ives, J. L.;
Jones, S. B.; Liston, D. R.; Nagel, A. A.; Nason, D. M.;
Nielsen, J. A.; Shalaby, I. A.; White, W. F. J. Med. Chem.
1994, 37, 2721; (e) Urban, F. J.; Breitenbach, R.; Murtia-
shaw, C. W.; Vanderplas, B. C. Tetrahedron: Asymmetry
1995, 6, 321.
29.49, 29.7, 48.3, 91.8, 167.5, 173.3 ppm. FT-IR: (mmax
/
CHCl3) 1448 (s), 1505 (m), 1613 (s), 1698 (m), 2858 (s),
2931 (s) cmꢀ1. HRMS (EIþ): calcd for C12H20N2O
208.1576, found: 208.1572.
4. Sugai, S.; Sato, K.; Kataoka, K.; Iwasaki, Y.; Tomita, K.
Chem. Pharm. Bull. 1984, 32, 530.
5. Attempts at transition metal catalysed amination reactions
failed and starting material was recovered in all cases. For
a review of Pd-catalysed amination reactions see: Hartwig,
J. F. Angew. Chem., Int. Ed. 1998, 37, 2046.
9. The microwave reactor would not tolerate heating reac-
tion mixtures containing solution phase BEMP to tem-
peratures >180 °C because of the high pressures generated
inside the reaction vessel.
10. ps-BEMP was found to decompose over the extended
reaction times required for conversion of 8 into 9.