C O M M U N I C A T I O N S
Acknowledgment. We thank Frank Froncek at the LSU
Department of Chemistry for obtaining the crystallographic data
set used for the X-ray structure determination, and Professor Larry
Byers for helpful discussions. The Dow Corning Corp. and the NSF
(Grant No. 0092001) are acknowledged for financial support, and
the NSF is acknowledged (CHE-0078054) for the purchase of a
400 MHz NMR.
Supporting Information Available: Crystallographic data for 3a
(CIF), experimental preparations for 3a-d, and kinetic data (PDF).
This material is available free of charge via the Internet at http://
pubs.acs.org.
References
Figure 1. ORTEP drawing of one of the two independent molecules of
(dcpe)Pd(H)SiPh3 (3a) in the unit cell. Thermal ellipsoids are at the 50%
probability level; cyclohexyl carbons are represented by spheres of arbitrary
radius. Important bond lengths (Å) and angles (deg) for molecule 1 followed
by equivalent values for molecule 2: Pd1-Si1, 2.335(2), 2.330(2); Pd1-
P1, 2.350(2), 2.350(2); Pd1-P2, 2.323(2), 2.323(2); Si1-Pd1-P1, 166.09-
(8), 166.58(8); Si1-Pd1-P2, 104.28(8), 104.99(8); P1-Pd1-P2, 86.27(8),
87.12(8).
(1) (a) ComprehensiVe Handbook of Hydrosilylation; Marcineac, B., Ed.;
Pergamon Press: New York, 1992. (b) Suganome, M.; Ito, Y. Chem. ReV.
2000, 100, 3221. (c) Metal-Catalyzed Cross-Coupling Reactions; Dieder-
ich, F., Stang, P. J., Eds.; Wiley-VCH: New York, 1998. (d) Cross-
Coupling Reactions; A Practical Guide; Miyuura, N., Ed.; Springer: New
York, 2002.
(2) (a) Eaborn, C.; Griffiths, R. W.; Pidcock, A. J. Organomet. Chem. 1982,
225, 331. (b) Schubert, U.; Muller, C. J. Organomet. Chem. 1989, 373,
165.
(3) (a) Curtis, M. D.; Greene, J. J. Am. Chem. Soc. 1978, 100, 6362. (b)
Seyferth, D.; Goldman, E. W.; Escudie, J. J. Organomet. Chem. 1984,
271, 337.
Table 1. Activation Parameters for Intramolecular Si-H
Interchange in Selected Silyl Palladium Hydrides and Deuterides
q
q
(4) (a) Kim, Y.-J.; Lee, S.-C.; Park, J. I. Organometallics 1998, 17, 4929.
(b) Kim, Y.-J.; Lee, S.-C.; Park, J. I.; Kohtano, O.; Choi, J.-C.; Yanamato,
T. J. Chem. Soc., Dalton Trans. 2000, 417. (c) Choi, S.-H.; Lin, Z. J.
Organomet. Chem. 2000, 608, 42.
Ea
∆H
(kcal mol-1
∆S
(cal mol-1 K-1
)
complex
(kcal mol-1
)
)
(dcpe)Pd(H)SiPh3
(dcpe)Pd(D)SiPh3
(dcpe)Pd(H)SiPh2Me
(dcpe)Pd(D)SiPh2Me
(dcpe)Pd(H)SiMe2Ph
(dcpe)Pd(H)SiEt3
12.9(4)
8.0(6)
10.7(6)
6.8(7)
10.7(6)
9.6(6)
11.8(4)
8.7(4)
12.4(4)
6.5(3)
10.2(6)
6.4(7)
10.3(6)
9.2(6)
11.6(5)
7.6(4)
8.3(8)
-15.6(6)
-1(1)
-18.3(2)
-1(1)
-3(1)
6.8(1)
(5) dcpe ) 1,2-bis(dicyclohexylphosphino)ethane; dippe ) 1,2-bis(diisopro-
pylphosphino)ethane.
(6) Pan, Y.; Mague, J. T.; Fink, M. J. Organometallics 1992, 11, 3495.
(7) Pan, Y.; Mague, J. T.; Fink, M. J. J. Am. Chem. Soc. 1993, 115, 3842.
(8) The remaining phosphorus-containing product (45%) is the phosphine
oxide of dcpe from the reaction of 1 with adventitious oxygen.
(dippe)Pd(H)SiPh3
(dippe)Pd(D)SiPh3
(9) (a) Schubert, U. AdV. Organomet. Chem. 1990, 30, 151. (b) Corey, J. Y.;
-10.0(3)
Braddock-Wilking, J. Chem. ReV. 1999, 99, 175.
(10) Complete characterization (room temperature) for 3a, 1H NMR (δ, ppm):
-1.81 (1H, triplet; JP-H ) 77), 0.8-2 (48H, broad), 7.1 (3H, mult), 7.2
(6H, mult), 8.4 (6H, mult). 13C{1H}NMR (δ, ppm): 26.3, 26.9, 27.0, 27.2,
activation enthalpies 4-6 kcal mol-1 less than their corresponding
hydrides, whereas the activation entropies are almost 17-25 cal
mol-1 K-1 more negative. The resultant effect is a crossover in the
KIE (kH/kD) over the measured temperature range. The KIE is
inverse at low temperatures (3a: -60 °C; kH/kD ) 0.13) but normal
at higher temperatures (3a: -10 °C; kH/kD ) 2.0).17 Temperature-
dependent changes in KIE are typically indicative of a change of
the rate-limiting step, implying that there exist two or more
consecutive steps (and one or more intermediates) in the fluxional
process. A reasonable intermediate would be a discrete well-defined
Si-H σ-complex.18
The fluxionality in silyl palladium hydrides may parallel the steps
involved in C-H reductive elimination. Both normal and inverse
isotope effects have been observed for the reductive elimination
of C-H bonds in alkylmetal hydrides, a process proposed to
proceed via intermediate C-H σ-complexes.19 The differences in
the observed isotope effects (normal vs inverse) for C-H reductive
elimination have been attributed to differences in the rate-
determining steps for the formation (via reductive coupling) and
dissociation of the alkane σ-complexes.20 The fluxionality of the
silyl palladium hydrides may reflect a similar situation, whereupon
the relative free energies of the transition states associated with
the formation of the Si-H σ-complex (via reductive coupling) and
its isomerization (via rotational interchange) are highly temperature
dependent, resulting in both inverse and normal KIEs for the same
complex. We are currently pursuing computational and mechanistic
studies to help elucidate the details of the hydride exchange and to
determine the origin of this remarkable isotope effect.
1
2
27.3, 29.1, 30.1, 30.2, 34.6 (d of d: JPC ) 13.0, JPC ) 2.3), 126.9,
127.2, 128.2, 136.1, 137.4, 148.6 (t: JPC ) 5.4). 31P{1H}NMR (δ, ppm):
2
58.23 (singlet). 29Si NMR: δ -5.08. J(SiH) ) 29 Hz. IR (KBr, cm-1):
1895 (PdH), 1427 (SiPh). Anal. Calcd for C44H64SiP2Pd: C, 66.98; H,
8.18. Found: C, 66.10; H, 8.44.
(11) The presence of a palladium hydride in the solid is clearly evident from
the stretching frequency ν(Pd-H, KBr) ) 1895 cm-1 in the IR spectrum.
(12) The intramolecular nature of the interchange is evidenced by the retention
of P-H (hydride) and P-Si coupling at both low- and high-temperature
exchange limits as well as by the insensitivity of the exchange rate to the
concentration of the complex and to extraneous silane.
(13) Rate constants were obtained at various temperatures employing full line
shape analysis with the gNMR 4.1 software package (Budzelaar, P. H.
M. Cherwell Scientific Limited, 1999). Erying plots of the rate constants
over the measured temperature range afforded the experimental activation
parameters.
(14) (a) Tsuji, Y.; Obura, Y. J. Organomet. Chem. 2000, 611, 343. (b) Tsuji,
Y.; Nishiama, Y.; Hori, S.; Ehihara, M.; Kawamura, T. Organometallics
1998, 17, 507.
(15) (a) Clark, H. C.; Hampden-Smith, M. J. J. Am. Chem. Soc. 1986, 108,
3829. (b) Clark, H. C.; Hampden-Smith, M. J. Coord. Chem. ReV. 1987,
79, 229.
(16) Azizian, H.; Dixon, K. R.; Eaborn, C.; Pidcock, A.; Shuaib, N. M.; Vinaixa,
J. J. Chem. Soc., Chem. Commun. 1982, 1020.
(17) If the KIE for 3a was extrapolated to ambient temperatures (20 °C), then
kH/kD ) 6.3. The relatively extreme values of the KIEs at both low and
high temperatures imply that quantum mechanical tunneling may be an
important contributor for the hydride interchange.
(18) Kubas, G. J. Metal Dihydrogen and σ-Bond Complexes: Structure Theory
and ReactiVity; Kluwer Academic/Plenum Publishers: New York, 2001;
Chapter 11 and references therein.
(19) Parkin, G.; Bercaw, J. E. Organometallics 1989, 8, 1172.
(20) For recent discussions of kinetic isotope effects and C-H reductive
elimination, see the following. (a) Churchill, D. C.; Janak, K. E.;
Wittenburg, J. S.; Parkin, G. J. Am. Chem. Soc. 2003, 125, 1403. (b) Jones,
W. D. Acc. Chem Res. 2003, 36, in press.
JA029853C
9
J. AM. CHEM. SOC. VOL. 125, NO. 11, 2003 3229