662
A. Spaggiari et al.
LETTER
left to stir at the same temperature over two hours. The
cold bath is then removed and the mixture stirred for an
additional 12 hours. Meanwhile, precipitation of b-carbo-
line as hydrochloride may occur, thus facilitating recovery
by simple filtration (as for 2a).19 Should this not be the
case, a final extraction step is performed, and the desired
product is recovered as free base.20 Nonetheless, no addi-
tional chromatographic purification is strictly required,
since major by-products are completely removed during
acid–base extraction. The results are summarized in
Table 1.
Acknowledgment
We thank MIUR (COFIN 2003) for financial support, as well as
Fondazione Cassa di Risparmio di Modena for the generous purcha-
se of a Bruker Avance 400 NMR spectrometer. We are grateful to
Alessandro Borghi for preliminary experiments. Thanks are due to
Maria Cecilia Rossi and Cinzia Restani (Centro Interdipartimentale
Grandi Strumenti at Università di Modena) for valuable assistance
during advanced NMR experiments and to Prof. Franco Ghelfi
(Università di Modena) for kindly providing chlorine delivery
facilities.
References
R'
R'
N
(1) Spaggiari, A.; Blaszczak, L. C.; Prati, F. Org. Lett. 2004, 6,
3885.
NH
R
(2) (a) Hatfield, L. D.; Blaszczak, L. C.; Fisher, J. W. US Patent
4,230,644, 1980; Chem. Abstr. 1981, 94, 156523.
(b) Hatfield, L. D.; Blaszczak, L. C.; Fisher, J. W. US Patent
4,226,986, 1980; Chem. Abstr. 1981, 94, 103348.
(3) (a) Coe, D. G.; Landauer, S. R.; Rydon, H. N. J. Chem. Soc.
1954, 2281. (b) Rydon, H. N.; Tonge, B. L. J. Chem. Soc.
1956, 3043. (c) Tseng, C. K. J. Org. Chem. 1979, 44, 2793.
(4) (a) Schultes, R. E.; Hofmann, A. The Botany and Chemistry
of Hallucinogens; Charles C. Thomas Publisher:
Springfield, 1980. (b) Freedland, C. S.; Mansbach, R. S.
Drug and Alcohol Dependence 1999, 54, 183. (c) Ott, J. J.
Psychoact. Drugs 1999, 31, 171. (d) Airaksinen, M. M.;
Kari, I. Med. Biol. 1981, 59, 21. (e) Airaksinen, M. M.;
Kari, I. Med. Biol. 1981, 59, 190.
(5) Bischler, A.; Napieralski, B. Ber. 1893, 26, 1903.
(6) For an excellent review, see: Love, B. Org. Prep. Proced.
Int. 1996, 28, 1.
(7) Fodor, G.; Gal, J.; Phillips, B. A. Angew. Chem., Int. Ed.
Engl. 1972, 11, 919.
(8) (a) Nicoletti, M.; O’Hagan, D.; Slawin, A. M. Z. J. Chem.
Soc., Perkin Trans. 1 2002, 116. (b) Doi, S.; Shirai, N.;
Sato, Y. J. Chem. Soc., Perkin Trans. 1 1997, 2217.
(9) (a) Huang, W. J.; Singh, O. V.; Chen, C. H.; Lee, S. S. Helv.
Chim. Acta 2004, 87, 167. (b) Wang, Y. C.; Georghiou, P.
E. Org. Lett. 2002, 4, 2675. (c) Fujii, T.; Ohba, M.; Ohashi,
T. Tetrahedron 1993, 49, 1879. (d) Hino, T.; Lai, Z.; Seki,
H.; Hara, R.; Kuramochi, T.; Nakagawa, M. Chem. Pharm.
Bull. 1989, 37, 2596. (e) Whaley, W. M.; Govindachari, T.
R. Org. React. 1951, 6, 74.
(PhO)3P·Cl2
O
CH2Cl2, –30 °C
R
N
N
H
H
2
1
Scheme 1 General scheme for Bischler–Napieralski reaction
promoted by (PhO)3P·Cl2 reagent
Noteworthily, 2a (harmalane)21a is a pharmacologically
active compound,21b whilst b-carboline 2d is closely relat-
ed to the fungal alkaloid infractin, originally isolated from
Cortinarius infractus.22 In addition, derivative 2e bears
structural resemblance to a metabolite present in the
entheogenic mushroom Amanita muscaria.4a,23
Table 1 Cyclization Results
Substrate
R
R¢
Product
2a
Yield (%)
1a
1b
1c
1d
1e
Me
H
98
51
65
50
62
Ph
H
2b
CH2Ph
H
2c
CH2CH2COOMe
Me
H
2d
COOMe
2e
(10) Tsuda, Y.; Kimiaki, I.; Toda, J.; Taga, J. Heterocycles 1976,
5, 157.
(11) Itoh, N.; Sugasawa, S. Tetrahedron 1957, 1, 45.
(12) Snyder, H. R.; Werber, F. X. J. Am. Chem. Soc. 1950, 72,
2962.
(13) (a) Kanaoka, Y.; Sato, E.; Yonemitsu, O.; Ban, Y.
Tetrahedron Lett. 1964, 35, 2419. (b) Kanaoka, Y.; Sato, E.;
Ban, Y. Chem. Pharm. Bull. 1967, 15, 101. (c) Kende, A.
S.; Ebetino, F. H.; Battista, R.; Boatman, R. J.; Lorah, D. P.;
Lodge, E. Heterocycles 1984, 21, 91.
When compared to available methodologies24 for the syn-
thesis of b-carbolines, our (PhO)3P·Cl2-primed protocol
offers an alternative route to perform similar cyclocon-
densations and is well tolerated by the sensitive indole
skeleton. Most interestingly, this method represents the
mildest procedure ever described in the literature for
Bischler–Napieralski-type cyclizations.
Furthermore, preliminary attempts to assess whether this
approach can be extended to the synthesis of 3,4-dihy-
droisoquinolines, yet another important class of bioactive
alkaloids, would suggest that this chemistry can be suc-
cessfully applied also to a variety of substituted b-phenyl-
ethylamides, albeit with less satisfactory yields. A
painstaking investigation along this direction and applica-
tion of this methodology to the total synthesis of natural
alkaloids are currently representing a central issue in our
laboratory and further developments will be reported in
due course.
(14) Banwell, M. G.; Bissett, B. D.; Busato, S.; Cowden, C. J.;
Hockless, D. C. R.; Holman, J. W.; Read, R. W.; Wu, A. W.
J. Chem. Soc., Chem. Commun. 1995, 2551.
(15) Larsen, R. D.; Reamer, R. A.; Corley, E. G.; Davis, P.;
Grabowski, E. J. J.; Reider, P. J.; Shinkai, I. J. Org. Chem.
1991, 56, 6034.
(16) Chern, M. S.; Shih, Y. K.; Dewang, P. M.; Li, W. R. J.
Comb. Chem. 2004, 6, 855.
(17) Synthesis of Tryptamine Amides (1a–d); General
Procedure.
Tryptamine (4500 mg, 28 mmol) was dissolved in dry
CH2Cl2 (20 mL) in a two-necked 100 mL flask, and Et3N
Synlett 2005, No. 4, 661–663 © Thieme Stuttgart · New York