Mannich Reaction of Terminal Alkynes
203
8.21±8.31 ꢀm, 1Harom) ppm; 13C NMRꢀCDCl 3, ꢂ, 75 MHz): 12.3, 40.8, 47.0, 56.4, 79.5, 82.4, 105.6,
120.7, 121.9, 125.0, 125.4, 125.7, 126.2, 127.2, 134.4, 153.3 ppm; HRMS ꢀEI): calcd. 267.1623,
found 267.1624.
1-ꢀ4-ꢀNaphthalen-2-yloxy)-but-2-ynyl)-pyrrolidine ꢀ4k; C18H19NO)
1H NMRꢀCDCl , ꢂ, 300 MHz): 1.70±1.78 ꢀm, 2CH2), 2.51±2.60 ꢀm, 2CH2), 3.43 ꢀs, CH2), 4.90
3
ꢀs, CH2), 6.89±6.96 ꢀd, 1Harom), 7.29±7.39 ꢀt, 1Harom), 7.39±7.51 ꢀm, 3Harom), 7.70±7.83 ꢀm, 1Harom),
8.20±8.32 ꢀm, 1Harom) ppm; 13C NMRꢀCDCl 3, ꢂ, 75 MHz): 23.7, 43.2, 52.4, 56.5, 79.0, 83.5, 105.7,
120.8, 122.0, 125.2, 125.5, 125.7, 126.3, 127.3, 134.4, 153.4 ppm; HRMS ꢀEI): calcd. 265.1467,
found 265.1465.
1-ꢀ4-ꢀNaphthalen-2-yloxy)-but-2-ynyl)-piperidine ꢀ4l; C19H21NO)
1H NMRꢀCDCl , ꢂ, 300 MHz): 1.27±1.39 ꢀm, CH2), 1.48±1.63 ꢀm, 2CH2), 2.32±2.45 ꢀt, 2CH2),
3
3.25 ꢀs, CH2), 4.85 ꢀs, CH2), 6.85±6.95 ꢀd, 1Harom), 7.26±7.35 ꢀt, 1Harom), 7.36±7.48 ꢀm, 3Harom),
7.68±7.79 ꢀm, 1Harom), 8.21±8.31 ꢀm, 1Harom) ppm; 13C NMRꢀCDCl 3, ꢂ, 75 MHz): 23.5, 25.6, 47.6,
53.0, 56.3, 79.4, 83.0, 105.5, 120.6, 121.8, 124.9, 125.2, 125.5, 125.7, 126.0, 127.1, 134.2,
153.2 ppm; HRMS ꢀCI, isobutane): calcd. 280.1701, found 280.1697.
4-ꢀ4-ꢀNaphthalen-2-yloxy)-but-2-ynyl)-morpholine ꢀ4m; C18H19NO2)
1H NMRꢀCDCl 3, ꢂ, 300 MHz): 2.37±2.46 ꢀt, 2CH2), 3.22 ꢀs, CH2), 3.57±3.70 ꢀt, 2CH2), 4.84
ꢀs, CH2), 6.80±6.90 ꢀd, 1Harom), 7.25±7.35 ꢀt, 1Harom), 7.35±7.50 ꢀm, 3Harom), 7.70±7.80 ꢀm, 1Harom),
8.20±8.30 ꢀm, 1Harom) ppm; 13C NMRꢀCDCl , ꢂ, 75 MHz): 47.0, 51.9, 56.1, 66.4, 79.9, 82.2,
3
105.4, 120.6, 121.7, 124.9, 125.2, 125.4, 125.8, 126.1, 127.1, 134.2, 153.1 ppm; HRMS ꢀEI): calcd.
281.1416, found 281.1416.
References
[1] a) Volkmann RA ꢀ1991) In: Trost BM, Fleming I ꢀeds) Comprehensive Organic Synthesis, vol 1.
Pergamon Press, Oxford, chapter 1.12, p 355; b) Kleinman EF, ibid, vol 2, chapter 4.1, p 893; c)
Heaney H, ibid, vol 2, chapter 4.2, p 953; d) Kleinman EF, Volkmann RA, ibid, vol 2, chapter
4.3, p 975; e) Overman LE, Ricca DJ, ibid, vol 2, chapter 4.4, p 1007; f) Tramontini M,
Angiolini L ꢀ1990) Tetrahedron 46: 1791; g) Tramontini M, Angiolini L ꢀ1994) Mannich Bases,
Chemistry and Uses. CRC, Boca Raton, FL; h) Bohme H, Haake M ꢀ1976) In: Taylor EC ꢀed)
Advances in Organic Chemistry, vol 9, part 1. Wiley, New York, p 108
[2] a) Karlen B, Lindeke B, Lindgren S, Svensson KG, Dahlbom R, Jenden DJ, Giering JE ꢀ1970)
J Med Chem 13: 651; b) Cook SC, Dax SL ꢀ1996) Bioorg Med Chem Lett 6: 797; c) Dahlbom R,
Karlen B, George R, Jenden DJ ꢀ1966) J Med Chem 9: 843; d) Neumeyer JL, Moyer UV,
Richman JA, Rosenberg FJ, Teiger DG ꢀ1967) J Med Chem 10: 615
[3] Knapp S, Hale JJ, Bastos M, Gibson FS ꢀ1990) Tetrahedron Lett 31: 2109
[4] a) Shari® A, Mohsenzadeh F, Naimi-Jamal MRꢀ2000) J Chem Res ꢀS) 394; b) Hamlet AB,
Durst T ꢀ1983) Can J Chem 61: 411
[5] a) Mojtahedi MM, Shari® A, Mohsenzadeh F, Saidi MRꢀ2000) Synth Commun 3031): 69;
b) Shari® A, Mirzaei M, Naimi-Jamal MRꢀ2001) Monatsh Chem 132: 875
[6] a) Mistryukov EA, Aronova NI, Kucherov VF ꢀ1962) Izv Akad Nauk SSSR, Otd Khim Nauk
870, CA ꢀ1962) 12421c; b) Mannich C, Chang FT ꢀ1933) Chem Ber 66: 418
[7] Stutz A, Granitzer W, Roth S ꢀ1985) Tetrahedron 41323): 5685
[8] Aziende Chimiche Riunite Angelini Francesco ꢀ1967) British patent 1055548, CA 66: 105003u