Please do not adjust margins
Organic & Biomolecular Chemistry
Page 9 of 10
Journal Name
ARTICLE
Density Functional Theory36 calculations were carried out using the
GAUSSIAN 09 suite of programs37 on the GALILEO cluster at Cineca
Supercomputing Center.38 The spin adducts (nitroxides)
conformations were systematically screened by means of
appropriate relaxed (i.e., with optimization at each point) Potential
Energy Surface (PES) Scans at the B3LYP/6-31G(d) level to ensure
that species were global minimum energy structures. In particular,
in the study upon 1b conformers, a 360° relaxed PES scan was
performed simultaneously of the C(7)-C(8)-C(23)-C(25) and N(19)-
C(8)-C(37)-C(46) dihedral angles at the same time at the B3LYP/6-
31G(d) level. Each conformer characterized by a relative Energy
Chalfont, M. J. Perkins and A. HorsfieDldO,I:J1.0A.1m03.9C/Ch7eOmB.01S3o8c7.F,
1968, 90, 7141; (d) E. G. Janzen and B. J. Blackburn, J. Am.
Chem. Soc., 1968, 90, 5909; (e) C. Lagerscrantz and S.
Forshult, Nature, 1968, 218, 1247.
2
3
J. A. Berliner and J. W. Heinecke, Free Radical Biol. Med.,
1996, 20, 707.
(a) R. T. Dean, S. Fu, R. Stocker and M. J. Davies, Biochem. J.,
1997, 324, 1; (b) S. Fu, M. J. Davies, R. Stocker and R. T.
Dean, Biochem. J., 1998, 333, 519.
(a) J. Moskovitz, M. B. Yim and P. B. Chock, Arch. Biochem.
Biophys., 2002, 397, 354; (b) R. A. Floyd and K. Hensley,
Neurobiol. Aging, 2002, 23, 795.
4
5
6
7
A. Iannone, A. Marconi, G. Zambruno, A. Giannetti, V.
Vannini and A. Tomas, J. Invest. Dermatol., 1993, 101, 59.
A. Ribier, Q. L. Nguyen, J.-T. Simonnet and B. Boussouira, US,
5569663 A, 1996.
minimum was submitted to
a further optimization without
constraints. In addition, the geometry optimization of all aminoxyls
was carried out with the unrestricted formalism, giving <S2>=0.7501
± 0.0003 for spin contamination (after annihilation). Moreover, in
frequency calculations on all conformers characterized by an Energy
minimum in the corresponding PES, imaginary (negative) values
were never found, confirming that the computed geometries were
always referred to a minimum. Thermodynamic quantities were
computed at 298 K by means of frequency calculations performed
employing the M06-2X24 functional in conjunction with the 6-
31+G(d,p) basis set. EPR parameters calculations were performed
following the multistep procedure previously described.22 Transition
state optimizations were performed employing the MPW1K
functional39 in conjunction with the 6-31G(d) basis set for
optimizations and 6-31+G(d,p) for frequency calculations; in these
last runs, all optimized stationary points were found to have the
appropriate number of imaginary frequencies, and the imaginary
modes (negative sign) correspond to the correct reaction
coordinates, also confirmed by their visualization with appropriate
programs.
(a) E. G. Janzen, Acc. Chem. Res., 1971, 4, 31. (b) C. A. Evans,
Aldrichimica Acta, 1979, 12, 23; (c) C. Mottley, R. P. Mason,
in Biological Magnetic Resonance 8, ed. L. J. Berliner and J.
Reuben, Plenum Publishers, New York, 1989, p 489; (d) P.
Tordo, Electron Paramagn. Reson., 1998, 16, 116; (e) G. R.
Buettner, Free Radical Biol. Med., 1987,
3
, 259; (f) E. G.
, 510; (g) E. G.
Janzen and J. I.-P. Liu, J. Magn. Reson., 1973,
9
Janzen, C. A. Evans and J. I.-P. Liu, J. Magn. Reson., 1973, 9,
513; (h) E. G. Janzen, in Free Radicals in Biology, ed. W. Prior,
Academic Press, New York, 1980, p 115.
8
9
(a) Y. Kotake and E. G. Janzen, J. Am. Chem. Soc., 1991, 113,
9503; (b) K. Makino, T. Hagiwara, H. Imaishi, M. Nishi, S. Fuji,
H. Ohya and A. Murakami, Free Radical Res. Commun., 1990,
9
, 233; (c) E. Finkelstein, G. M. Rosen and E. Rauckman, J.
Mol. Pharmacol., 1982, 21, 262.
(a) R. D. Hinton and E. G. Janzen, J. Org. Chem., 1992, 57
,
2646; (b) A. Zeghdaoui, B. Tuccio, J.-P. Finet, V. Cerri, and P.
Tordo, J. Chem. Soc., Perkin Trans. 1, 1995, 2087; (c) E. G.
Janzen, Y. K. Zhang and D. L. Haire, Magn. Reson. Chem.
1994, 32, 711; (d) C. Fréjaville, H. Karoui, B. Tuccio, F. Le
Moigne, M. Culcasi, S. Pietri, R. Lauricella and P. Tordo, J.
Chem. Soc., Chem. Commun., 1994, 1793; (e) C. Fréjaville, H.
Karoui, B. Tuccio, F. Le Moigne, M. Culcasi, S. Pietri, R.
Lauricella and P. Tordo, J. Med. Chem., 1995, 38, 258; (f) K.
Stolze, N. Udilova and H. Nohl, Biol. Chem., 2002, 383, 813;
(g) K. Stolze, N. Udilova, T. Rosenau, A. Hofinger and H. Nohl,
Biol. Chem., 2003, 384, 493; (h) H. Zhao, J. Joseph, H. Zhang,
H. Karoui and B. Kalyanaraman, Free Radic. Biol. Med., 2001,
31, 599; (i) G. Olive, A. Mercier, F. Le Moigne, A.
Acknowledgements
Università Politecnica delle Marche and University of Buenos
Aires (UBACyT 20020130100466BA) are kindly acknowledged
for financial support, as well as Cineca Supercomputing Center
for Computational Resource Allocation (ISCRA grant ANTIOX-D,
code: HP10CZ6SCE).
Rockenbauer and P. Tordo, Free Radic. Biol. Med., 2000, 28
,
403; (j) P. Tsai, S. Pou, R. Straus and G. M. Rosen, J. Chem.
Soc., Perkin Trans. 2, 1999, 1759; (k) G. M. Rosen, P. Tsai, E.
D. Barth, G. Dorey, P. Casara, M. Spedding and H. J. Halpern,
J. Org. Chem., 2000, 65, 4460.
Notes and references
10 P. Astolfi, M. Marini and P. Stipa, J. Org. Chem, 2007, 72
,
8677. For a review see: R. Improta, V. Barone, Chem. Rev.
2004, 104, 1231.
11 O. Ouari, M. Hardy, H. Karoui and P. Tordo, Electron
Paramag. Reson., 2011, 22, 1.
12 G. E. Adams, E. M. Fielden, M. A. Naylor and I. J. Stratford,
UK Pat. Appl. GB, 2257360, 1993.
‡
Attemps of superoxide generation with the xanthine-xanthine
oxidase system did not produce any EPR signals due to water
insolubility of the nitrones. Neither did the trial in a solvent
mixed system using dioxane in a mixture containing 80% (by
volume) oxygen-bubbled phosphate buffer (0.1 M, pH 7.3).
13 P. C. Parthasarathy, B. S. Joshi, M. R. Chaphekar, D. H.
Gawad, L. Anandan, M. A. Likhate, M. Hendi, S. Mudaliar, S.
Iyer, D. K. Ray and V. B Srivastava, Indian J. Chem., Sect. B:
Org. Chem. Incl. Med. Chem., 1983, 22, 1250.
§ Nitroxides have two different resonance structures. Hydrogen
bonding stabilizes the zwitterionic structure, which leads to an
increase of aN.29
14 (a) G. J. Ellames, K. R. Lawson, A. A. Jaxa-Chamiec and R. M.
Upton, EP, 0256545, 1988; (b) G. J. Ellames and A. A. Jaxa-
Chamiec, US Pat., 4,696,928, 1987; (c) G. J. Ellames, R. M.
Upton, A. A. Jaxa-Chamiec and P. L. Myers, US Pat., 4,761,414,
1988.
§§
Reported
pKA
values
7.65 and
for
for
1-phenyl-2-(4-
1-phenyl-2-(4-
nitrophenyl)imidazoline:
nitrophenyl)-1,4,5,6-tetrahydropyrimidine: 10.51 (From Ref. 33).
1
(a) A. Mackor, Th. A. J. W. Wajer and Th. J. de Boer,
Tetrahedron Lett., 1966, 2115; (b) M. Iwamura and N.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 9
Please do not adjust margins