Yan et al.
H, J ) 12.5 Hz, 1/2 CH2CCl3), 4.95 (d, 1 H, J ) 10.5 Hz,
H-1GlcN), 4.75 (d, 1 H, J ) 12.0 Hz, 1/2 CH2CCl3), 4.57 (d, 1 H,
J ) 8.0 Hz, H-1Gal), 4.13 (dd, 1 H, J ) 10.0, 2.5 Hz, H-3Gal),
4.00 (dd, 1 H, J ) 12.0 Hz, J < 1.0 Hz, H-6GlcN), 3.97 (d, 1 H,
J ) 2.5 Hz, H-4Gal), 3.88-3.92 (m, 2 H, H-8Neu, H-9Neu), 3.87
(dd, 1 H, J ) 12.5 Hz, J ) 4.5 Hz, H-6GlcN), 3.86 (t, 1 H, J )
10.0 Hz, H-5Neu), 3.78 (t, 1 H, J ) 8.5 Hz, H-4GlcN), 3.76 (t, 1
H, J ) 9.5 Hz, H-3GlcN), 3.71-3.75 (m, 3 H, 2 × H-6Gal, H-5Gal),
3.70 (td, 1 H, J ) 11.5, 4.5 Hz, H-4Neu), 3.67 (m, 1 H, H-9Neu),
3.65 (dd, 1 H, J ) 10.5, 1.5 Hz, H-6Neu), 3.62-3.64 (brs, 1 H,
H-5GlcN), 3.61 (t, 1 H, J ) 8.0 Hz, H-2GlcN), 3.60 (d, 1 H, J )
8.0 Hz, H-7Neu), 3.58 (dd, 1 H, J ) 10.0, 8.0 Hz, H-2Gal), 2.77
(dd, 1 H, J ) 12.5, 5.0 Hz, H-3eqNeu), 2.04 (s, 3 H, OdCCH3),
1.81 (t, 1 H, J ) 12.5 Hz, H-3axNeu); 13C NMR (D2O) δ 175.71,
174.57 (C-1Neu, OdCCH3), 157.16 (OdCOCH2CCl3), 132.96,
132.21, 130.04, 128.83 (6 × C, Ph), 103.24 (C-1Gal), 100.50
(C-2Neu), 95.63 (CCl3), 87.59 (C-1GlcN), 79.57 (C-5GlcN), 78.63
(C-4GlcN), 76.17 (C-3Gal), 75.88 (C-5Gal), 74.95 (CH2CCl3), 74.48
(C-3GlcN), 73.57 (C-6Neu), 72.46 (C-8Neu), 70.07 (C-2Gal), 69.03
(C-4Neu), 68.78 (C-7Neu), 68.18 (C-4Gal), 63.27 (C-9Neu), 61.74
(C-6Gal), 60.80 (C-6GlcN), 56.78 (C-2GlcN), 52.37 (C-5Neu), 40.32
been used for the synthesis of oligosaccharides for vaccine
and pharmaceutical applications. In principle, the syn-
thetic strategy disclosed in this paper will be applicable
to the synthesis of a variety of di-, tri-, and oligosaccha-
ride donors. Further applications of this methodology are
in progress and will be reported in due course.
Exp er im en ta l Section
Optical rotations were obtained (λ ) 589 nm) at 20 °C in a
10 cm 1 mL cell. NMR spectra were recorded on a 500 or 200
MHz instrument at 300 K. Chemical shifts were given in ppm
relative to the signal of internal TMS or indirectly to solvent
signals 7.26 (CDCl3) or 4.79 (D2O) for 1H NMR spectra and to
the solvent signals 77.0 (CDCl3) or 49.15 (internal methyl
alcohol) for 13C NMR spectra. All signal assignments were
made by standard 1H-1H-COSY and 1H-decoupled 13C-1H-
COSY experiments. All chemicals for synthesis were purchased
from commercial suppliers, and solvents were purified accord-
ing to standard procedures. Silica gel (230-400 mesh) was
used for flash chromatography. C18 silica gel (10% capped with
TMS, 35-70 mesh) was used for reversed-phase chromatog-
raphy.
(C-3Neu), 22.72 (OdCCH3); MS (FAB) calcd for C32H45Cl3N2O19
921.1, found m/z 921.1 [M+].
S
P h en yl O-(Meth yl 5-a ceta m id o-4,7,8,9-tetr a -O-a cetyl-
3,5-d id eoxy-D-glycer o-r-D-ga la ct o-2-n on u lop yr a n osylo-
n a te)- (2f3)-O-(2,4,6-tr i-O-a cetyl-â-D-ga la ctop yr a n osyl)-
(1f4)-2-d eoxy-3,6-d i-O-a cet yl-1-t h io-2-(2,2,2-t r ich lor o-
eth oxyca r bon yla m in o)-â-D-glu cop yr a n osid e (2b). A solu-
tion of 7b (280 mg, 0.34 mmol) in 20 mL of dry methanol was
stirred under argon with pretreated DOWEX500Wx8-200 resin
(H+ form) (4 g) at room temperature for 16 h. The resin was
removed by filtration. The filtrate was concentrated, and the
residue was coevaporated with toluene (3 × 20 mL) and dried
under high vacuum to give the methyl ester of 7b. To a solution
of the crude methyl ester in acetic anhydride (10 mL) was
added scandium triflate (15 mg, 0.03 mmol), and the reaction
mixture was stirred at rt for 2 h under argon. The reaction
was quenched with NaHCO3 (10 mg, 0.12 mmol), and product
was extracted with CH2Cl2 (100 mL) three times. The com-
bined organic layer was washed with aqueous NaHCO3, brine,
and water successively, dried over Na2SO4, and evaporated.
The residue was purified by silica gel chromatography (ethyl
acetate-methanol 98:2) to yield pure 2b (305 mg, 74%) and
En zym a tic Syn th esis of P h en yl O-(â-D-Ga la ctop yr a n o-
syl)-(1f4)-2-d e oxy-1-t h io-2-(2,2,2-t r ich lor oe t h oxyca r -
bon yla m in o)-â-D-glu cop yr a n osid e (6b). A fusion enzyme
UDP-galactose 4-epimerase/â(1f 4)galactosyltransferase (GalE-
LgtB, 26.4 units, 24 mL) was added to a solution of 3.2 mM
acceptor 5b (1.0 g), 15 mM MnCl2 (105 mL of 100 mM), and
1.28 mM UDP-Glc (6.0 mL of 150 mM) in 50 mM HEPES
buffer (35 mL of 1 M, pH 7.4). The reaction was performed at
37 °C for a total of 20 h while two additional portions of 1.28
mM UDP-Glc (6.0 mL of 150 mM) were added in 30 min
intervals. The formation of 6b (Rf 0.43) was monitored by TLC
(MeOH-CHCl3-0.5% CaCl2 40:50:10). Chromatography of the
crude reaction mixture on
a C18 reversed-phase column
(water-MeOH 1:1) afforded pure 6b (1.22 g, 89%): [R]D -5.6
1
(c 0.4, CH3OH); H NMR (methanol-d4) δ 7.52-7.55 (m, 2 H,
Ph), 7.26-7.35 (m, 3 H, Ph), 4.91 (d, 1 H, J ) 12.0 Hz, 1/2
CH2CCl3), 4.82 (d, 1 H, J ) 10.5 Hz, H-1GlcN), 4.76 (d, 1 H, J
) 12.0 Hz, 1/2 CH2CCl3), 4.42 (d, 1 H, J ) 7.5 Hz, H-1Gal),
3.95 (dd, 1 H, J ) 12.5, 2.5 Hz, H-6GlcN), 3.88 (dd, 1 H, J )
12.5, 4.0 Hz, H-6GlcN), 3.83 (d, 1 H, J ) 3.0 Hz, H-4Gal), 3.80
(dd, 1 H, J ) 11.5, 7.5 Hz, H-6Gal), 3.70 (dd, 1 H, J ) 11.5, 4.0
Hz, H-6Gal), 3.66-3.69 (m, 2 H, H-4GlcN, H-3GlcN), 3.59-3.62 (m,
1 H, H-5Gal), 3.57 (t, 1 H, J ) 9.5 Hz, H-2GlcN), 3.55 (brt, 1 H,
J ) 8.5 Hz, H-2Gal), 3.50 (dd, 1 H, J ) 9.5, 3.0 Hz, H-3Gal),
3.46 (brs, 1 H, H-5GlcN); 13C NMR (methanol-d4) δ 157.49
(OdCOCH2CCl3), 136.33, 133.43, 130.72, 129.28 (6 × C, Ph),
105.79 (C-1Gal), 98.02 (CCl3), 89.56 (C-1GlcN), 81.49 (C-5GlcN),
81.18 (C-4GlcN), 78.03 (C-5Gal), 76.42 (2 × C, CH2CCl3, C-3GlcN),
75.66 (C-3Gal), 73.48 (C-2Gal), 71.22 (C-4Gal), 63.47 (C-6Gal), 62.81
1
lactone 9 (10 mg, 2%). 2b: [R]D -5.1 (c 0.5, CHCl3); H NMR
(CDCl3) δ 7.49 (m, 2 H, Ph), 7.29 (m, 3 H, Ph), 5.54 (ddd, 1 H,
J ) 9.2, 5.6, 2.8 Hz, H-8Neu), 5.39 (dd, 1 H, J ) 9.2 , 2.8 Hz,
H-7Neu), 5.25 (d, 1 H, J ) 9.6 Hz, NHGlcN), 5.11 (t, 1 H, J ) 9.6
Hz, H-3GlcN), 5.08 (d, 1 H, J ) 10.0 Hz, NHNeu), 4.93 (dd, 1 H,
J ) 10.4, 8.0 Hz, H-2Gal), 4.88 (td, 1 H, J ) 11.2, 4.8 Hz, H-4Neu),
4.87 (d, 1 H, J ) 3.6 Hz, H-4Gal), 4.80 (d, 1 H, J ) 12.4 Hz, 1/2
CH2CCl3), 4.72 (d, 1 H, J ) 12.4 Hz, 1/2 CH2CCl3), 4.69 (d, 1
H, J ) 8.0 Hz, H-1Gal), 4.68 (d, 1 H, J ) 10.4 Hz, H-1GlcN), 4.52
(dd, 1 H, J ) 10.0, 3.2 Hz, H-3Gal), 4.50 (dd, 1 H, J ) 11.6, 2.0
Hz, H-6GlcN), 4.42 (dd, 1 H, J ) 12.4, 2.8 Hz, H-9Neu), 4.19 (dd,
1 H, J ) 12.0, 6.4 Hz, H-6GlcN), 4.04 (t, 1 H, J ) 10.0 Hz,
H-5Neu), 4.00 (m, 2 H, 2 × H-6Gal), 3.98 (dd, 1 H, J ) 12.4, 5.6
Hz, H-9Neu), 3.85 (m, 1 H, H-5Gal), 3.84 (s, 3 H, COOCH3), 3.81
(m, 1 H, H-4GlcN), 3.78 (t, 1 H, J ) 10.0 Hz, H-2GlcN), 3.64 (m,
1 H, H-5GlcN), 3.63 (dd, 1 H, J ) 10.8, 2.8 Hz, H-6Neu), 2.58
(dd, 1 H, J ) 12.8, 4.8 Hz, H-3eqNeu), 2.24, 2.16, 2.09, 2.09, 2.08,
2.05, 2.05, 2.04, 2.00, 1.85 (s, 30 H, OdCCH3), 1.81 (t, 1 H, J
) 12.5 Hz, H-3axNeu); 13C NMR (CDCl3) δ 170.88, 170.65,
170.56, 170.41, 170.39, 170.32, 170.31, 170.26, 170.14, 169.59
(10 × C, OdCCH3), 167.91 (C-1Neu), 154.20 (OdCOCH2CCl3),
132.38, 131.71, 128.86, 127.96 (6 × C, Ph), 101.01 (C-1Gal),
96.74 (C-2Neu), 95.28 (CCl3), 87.10 (C-1GlcN), 77.25 (C-5GlcN),
76.25 (C-4GlcN), 74.52 (CH2CCl3), 73.97 (C-3GlcN), 72.01 (C-6Neu),
71.28 (C-3Gal), 70.53 (C-5Gal), 69.80 (C-2Gal), 69.28 (C-4Neu), 67.78
(C-8Neu), 67.28 (C-4Gal), 66.88 (C-7Neu), 62.54 (C-6GlcN), 62.21
(C-9Neu), 61.53 (C-6Gal), 55.17 (C-2GlcN), 53.12 (COOCH3), 49.06
(C-5Neu), 37.35 (C-3Neu), 23.14, 21.49, 20.89, 20.78, 20.74 × 3,
(C-6GlcN), 58.62 (C-2GlcN); MS (FAB) calcd for C21H28Cl3NO11
S
607.0, found m/z 607.1 [M+].
P h en yl O-(5-Aceta m id o-3,5-d id eoxy-D-glycer o-r-D-ga -
la cto-2-n on u lop yr a n osylon a te)-(2f3)-O-(â-D-ga la ctop y-
r a n osyl)-(1f4)-2-d eoxy-1-t h io-2-(2,2,2-t r ich lor oet h oxy-
ca r b on yla m in o)-â-D-glu cop yr a n osid e (7b ). The reaction
was performed in a total volume of 400 mL, and the following
reagents were added sequentially: 2.2 mM acceptor 6b (550
mg, 0.90 mmol), 50 mM (2-(N-morpholino)ethanesulfonic acid)
hydrate (MES, 40 mL of 0.5 M, pH 6.0), 100 mM MgCl2 (40
mL of 1 M), and 3.0 mM CMP-NeuNAc (60 mL of 20 mM).
The reaction was allowed to proceed at 37 °C after the addition
of the sialyltransferase (FUS-01/2, 150 units, 7.5 mL). The
reaction progress, i.e., the formation of material having Rf 0.15,
was monitored by TLC (MeOH-CHCl3-0.5% CaCl2 40:50:10).
After a total reaction time of 2 h, the crude product was
chromatographed (C18 reversed-phase column; elution with
water and then 65:35 water-MeOH) to yield pure trisaccha-
ride 7b (700 mg, 94%): [R]D -24.2 (c 0.1, H2O); 1H NMR (D2O)
δ 7.54-7.57 (m, 2 H, Ph), 7.39-7.44 (m, 3 H, Ph), 4.96 (d, 1
2430 J . Org. Chem., Vol. 68, No. 6, 2003