10.1002/adsc.201800495
Advanced Synthesis & Catalysis
unsymmetrical azoxy compounds directly from
aromatic amines and nitrosobenzenes. The reaction is
operationally simple and is amenable to large scale,
greatly reducing the difficulty in synthesis of
unsymmetrical azoxy compounds. Further study of
this new route would open a new chapter of research
that brings more reactions to the synthesis and
application of unsymmetrical azoxy compounds.
Chem. 2009, 299, 121; c) A. Shukla, R. K. Singha, L. N.
S. Konathala, T. Sasaki, R. Bal, RSC Adv. 2016, 6,
22812; d) S. Ghosh, S. S. Acharyya, T. Sasaki, R. Bal,
Green Chem. 2015, 17, 1867; e) S. S. Acharyya, S.
Ghosh, R. Bal, ACS Sust. Chem. Eng. 2014, 2, 584; f) E.
Voutyritsa, A. Theodorou, M. G. Kokotou, C. G.
Kokotos, Green Chem. 2017, 19, 1291; g) R. K.
Sharma, Y. Monga, Appl. Catal. A-Gen. 2013, 454, 1; h)
L. Yang, G. Shi, X. Ke, R. Shen, L. Zhang, Cryst. Eng.
Comm. 2014, 16, 1620.
Experimental Section
[3] M. I. Qadir, J. D. Scholten, J. Dupont, Catal. Sci.
Technol. 2015, 5, 1459.
General Procedure for the Synthesis of 3
[4] a) F. Yang, Z. Wang, X. Zhang, L. Jiang, Y. Li, L.
Wang, Chem. Cat. Chem. 2015, 7, 3450; b) B. T.
Newbold, J. Org. Chem. 1962, 27, 3919; c) R. W.
White, W. D. Emmons, Tetrahedron 1962, 17, 31; d)
W. D. Emmons, J. Am. Chem. Soc. 1957, 79, 5528.
[5] H. E. Baumgarten, A. Staklis, E. M. Miller, J. Org.
Chem. 1965, 30, 1203.
[6] a) H. Firouzabadi, Z. Mostafavipoor, Bull. Chem. Soc.
Jpn. 1983, 56, 914; b) O. H. Wheeler, D. Gonzalez,
Tetrahedron 1964, 20, 189.
A solution of 1 (0.2 mmol, 1.0 equiv.), 2 (0.22 mmol,
1.1 equiv.), I2 (0.3 mmol, 1.5 equiv.) and DABCO
(0.6 mmol, 3.0 equiv.) in toulune (1 mL) in a sealed
10 ml Schlenk tube was stirred at 65 oC. The progress
of reaction was monitored by TLC and/or GC-MS.
After completion of reaction, the crude reaction
mixture was cooled to room temperature, and the
solvent was then removed under reduced pressure.
Then, the residue was purified by column
chromatography on silica gel with EtOAc and
petroleum ether as eluent to give 3. The
characterization data of the products are given in the
Supporting Information.
[7] S. L. Goldstein, E. McNelis, J. Org. Chem. 1973, 38,
183.
[8] E. Wenkert, B. Wickberg, J. Am. Chem. Soc. 1962, 84,
4914.
[9] a) Z. Zhang, X. Wang, K. Yuan, W. Zhu, T. Zhang, Y.
Wang, J. Ke, X. Zheng, C. Yan, Y. Zhang, Nanoscale
2016, 8, 15744; b) Z. Liu, Y. Huang, Q. Xiao, H. Zhu,
Green Chem. 2016, 18, 817; c) X. Liu, S. Ye, H. Li, Y.
Liu, Y. Cao, K. Fan, Catal. Sci. Technol. 2013, 3,
3200; d) J. H. Kim, J. H. Park, Y. K. Chung, K. H.
Park, Adv. Synth. Catal. 2012, 354, 2412; e) B. Pal, T.
Torimoto, K. Okazakib, B. Ohtanic, Chem. Commun.
2007, 483.
[10] C. Srilakshmi, H. V. Kumar, K. Praveena, C.
Shivakumara, M. M. Nayak, RSC Adv. 2014, 4, 18881.
[11] M. N. Pahalagedara, L. R. Pahalagedara, J. He, R.
Miao, B. Gottlieb, D. Rathnayake, S. L. Suib, J. Catal.
2016, 336, 41.
Typical Procedure for the Synthesis of 4a
Into a dried 100 ml round bottom flask equipped with
a magnetic stir bar, was added [Cp*RhCl2]2 (15.4 mg,
0.025 mmol), AgSbF6 (34.6 mg, 0.1 mmol), 3a (232.0
mg, 1.0 mmol). The vessel was evacuated and
backfilled with N2 before PivOH (114.9μL, 1.0
mmol), dimethyl 2-diazomalonate (237.0 mg, 1.5
mmol), and 1.0 ml of 1,2-dichloroethane were added.
The mixture was heated to 130 oC and stirred
overnight. After completion of reaction, the reaction
mixture was cooled to room temperature, and the
solvent was removed under reduced pressure. Then
the residue was purified by column chromatography
on silica gel (PE/EtOAc = 10/1, v/v) to afford 4a as a
light yellow solid (234.5 mg, 82% yield).
[12] a) F. A. Khan, C. Sudheer, Tetrahedron Lett. 2009, 50,
3394; b) H. N. Borah, D. Prajapati, J. S. Sandhu, A. C.
Ghosh, Tetrahedron Lett. 1994, 35, 3167.
[13] D. D. Laskar, D. Prajapati, J. S. Sandhu, J. Chem. Soc.
Perkin Trans. 2000, 1, 67.
[14] a) T. E. Stevens, J. Org. Chem. 1964, 29, 311; b) T. E.
Stevens, J. Org. Chem. 1967, 32, 1641; c) Z. Long, Y.
Yang, J. You, Org. Lett. 2017, 19, 2781; d) Z. Long, Z.
Wang, D. Zhou, D. Wan, J. You, Org. Lett. 2017, 19,
2777
[15] a) B. T. Newbold, J. Org. Chem. 1962, 27, 3919; b) N.
A. Johnson, E. S. Gould, J. Org. Chem. 1974, 39, 407;
c) M. Nakata, S. Kawazoe, T. Tamai, K. Tatsuta, H.
Ishiwata, Y. Takahashi, Y. Okuno, T. Deushi,
Tetrahedron Lett. 1993, 34, 6095.
Acknowledgements
Financial support from the National Natural Science Foundation
of China (Nos. 21302143, and 51572198), Natural Science
Foundation of Zhejiang Province (Nos. LY13B020006, and
LZ17E020002) are greatly appreciated.
References
[16] a) H. Li, P. Li, Q. Zhao, L. Wang, Chem. Commun.
2013, 49, 9170; b) M. Sun, X. Chen, L. Zhang, W.
Sun, Z. Wang, P. Guo, Y. Li, X. Yang, Org. Biomol.
Chem. 2016, 14, 323; c) W. Zhang, H. Deng, H. Li,
Org. Chem. Front, 2017, 4, 2202; d) H. Li, H. Deng,
Synthesis, 2017, 49, 2711; e) H. Li, X. Xie, L. Wang,
Chem. Commun., 2014, 50, 4218; f) D. Zhang, X. Cui,
[1] a) A. M. Tafesh, J. Weiguny, J. Chem. Rev. 1996, 96,
2035; b) G. S. Kumar, D. C. Neckers, Chem. Rev. 1989,
89, 1915; c) S. Sakaue, T. Tsubakino, Y. Nishiyama, Y.
Ishii, J. Org. Chem. 1993, 58, 3633; d) E. Merino,
Chem. Soc. Rev. 2011, 40, 3835.
[2] a) A. Nezhadali, M. Akbarpour, Chinese Chem. Lett.
2010, 21, 43; b) C. Chang, S. Liu, J. Mol. Catal. A-
6
This article is protected by copyright. All rights reserved.