The Journal of Organic Chemistry
ARTICLE
Matrix Isolation. Matrix isolation studies were performed using
conventional equipment.73
(4) Sankaranarayanan, J.; Bort, L. N.; Mandel, S. M.; Chen, P.;
Krause, J. A.; Brooks, E. E.; Tsang, P.; Gudmundsdottir, A. D. Org. Lett.
2008, 10, 937.
(5) Leyva, E.; Platz, M. S.; Persy, G.; Wirz, J. J. Am. Chem. Soc. 1986,
108, 3783.
(6) Klima, R. F.; Gudmundsdottir, A. D. J. Photochem. Photobiol., A
2004, 162, 239.
(7) Mahe, L.; Izuoka, A.; Sugawara, T. J. Am. Chem. Soc. 1992, 114,
7904.
(8) Warmuth, R.; Makowiec, S. J. Am. Chem. Soc. 2007, 129, 1233.
(9) Buron, C.; Platz, M. S. Org. Lett. 2003, 5, 3383.
(10) Murthy, R. S.; Muthukrishnan, S.; Rajam, S.; Mandel, S. M.;
Ault, B. S.; Gudmundsdottir, A. D. J. Photochem. Photobiol., A 2009,
201, 157.
(11) Parasuk, V.; Cramer, C. J. Chem. Phys. Lett. 1996, 260, 7.
(12) McDonald, R. N.; Davidson, S. J. J. Am. Chem. Soc. 1993,
115, 10857.
Photolysis of 1. Photolysis of 1 in Argon-Saturated Acetonitrile.
A solution of 1 (6.29 mM, 1 mg/mL) in acetonitrile (dry) was placed
into a Pyrex tube, and it was degassed by bubbling Ar for 20 min. The
sample was irradiated with light from a 450 W high-pressure mercury
lamp through a Pyrex filter (>310 nm) for 1 h. After irradiation, the
solvent was evaporated under reduced pressure. 1H NMR spectroscopy
showed that a single photoproduct 3P was formed in 80% yield, and the
starting material 1 was recovered in 20% yield.
Photolysis of 1 in Oxygen-Saturated Acetonitrile. A solution of 1
(6.29 mM, 1 mg/mL) in acetonitrile (dry) was placed into a Pyrex tube,
and O2 was bubbled into the solution for 20 min. The sample was
irradiated with light from a 450 W high-pressure mercury lamp through a
Pyrex filter (>310 nm) for 1 h. After irradiation, the solvent was
1
evaporated under reduced pressure. H NMR spectroscopy showed
that a single photoproduct 3P was formed in 44% yield, and the starting
material was recovered in 56% yield.
(13) Travers, M. J.; Cowles, D. C.; Clifford, E. P.; Ellison, G. B. J. Am.
Chem. Soc. 1992, 114, 8699.
(14) Travers, M. J.; Cowles, D. C.; Clifford, E. P.; Ellison, G. B.;
Engelking, P. C. J. Chem. Phys. 1999, 111, 5349.
(15) Singh, B.; Zweig, A.; Gallivan, J. B. J. Am. Chem. Soc. 1972,
94, 1199.
(16) Kaczor, A.; Gomez-Zavaglia, A.; Cardoso, A. L.; Melo, T. M. V.
D. P.; Fausto, R. J. Phys. Chem. A 2006, 110, 10742.
(17) Gomez-Zavaglia, A.; Kaczor, A.; Coelho, D.; Cristiano, M. L. S.;
Fausto, R. J. Mol. Struct. 2009, 919, 271.
(18) Inui, H.; Murata, S. Chem. Lett. 2001, 832.
(19) Inui, H.; Murata, S. Chem. Commun. (Cambridge, U. K.) 2001,
1036.
(20) Inui, H.; Murata, S. Chem. Phys. Lett. 2002, 359, 267.
(21) Inui, H.; Murata, S. J. Am. Chem. Soc. 2005, 127, 2628.
(22) Murov, S. L.; Carmichael, I.; Hug, G. L. Handbook of Photo-
chemistry, 2nd ed.; Marcel Dekker, Inc.: New York, 1993.
(23) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.;
Robb, M. A.; Cheeseman, J. R.; Montgomery, J. A., Jr.; Vreven, T.;
Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.;
Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson,
G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.;
Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.;
Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.;
Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.;
Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.;
Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski,
V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick,
D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui,
Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.;
Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.;
Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.;
Pople, J. A. Gaussian 03, Revision A.1; Gaussian, Inc.: Wallingford, CT,
2004.
(24) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
(25) Lee, C.; Yang, W.; Parr, R. G. Phys. Rev. B: Condens. Matter
1988, 37, 785.
(26) Density Functional Methods in Chemistry; Labanowksi, J. K.;
Andzelm, J. W., Eds.; Springer-Verlag: New York, 1991.
(27) Parr, R. G.; Weitao, Y. Density Functional Theory in Atoms and
Molecules; Oxford University Press: Oxford, 1989.
(28) Stratmann, R. E.; Scuseria, G. E.; Frisch, M. J. J. Chem. Phys.
1998, 109, 8218.
Irradiation of 1 through Pyrex in Oxygen-Saturated Acetonitrile-d3.
An oxygen-saturated solution of 1 in CH3CN-d3 with methyl benzoate
as an internal standard was photolyzed through Pyrex. Analysis of the
reaction mixture with 1H NMR spectroscopy showed formation of 3P
and remaining 1. However, integration of the 1H NMR signals due to 1
and 3P in comparison to the internal standard showed that the absolute
chemical yields decreased with irradiation.
Irradiation of 1 at Longer Wavelength. A solution of 1 (6.29 mM,
1 mg/mL) and acrylonitrile (0.95 M) in acetonitrile (dry) was placed
into a Pyrex tube, and O2 was bubbled into the solution for 20 min. The
sample was irradiated with light from a 450 W high-pressure mercury
lamp through a light filter (>360 nm) for 1 h. After irradiation, the
solvent was evaporated under reduced pressure. 1H NMR spectroscopy
showed that a single photoproduct 3P was formed in 44% yield, and the
starting material 3 was recovered in 56% yield.
’ ASSOCIATED CONTENT
S
Supporting Information. Cartesian coordinates, ener-
b
gies, and vibrational frequencies. This material is available free
’ AUTHOR INFORMATION
Corresponding Author
*E-mail: Anna.Gudmundsdottir@uc.edu.
’ ACKNOWLEDGMENT
We thank the National Science Foundation and the Ohio
Supercomputer Center for supporting this work. S.R. thanks the
UC Chemistry Department for a Twitchell fellowship. C.B. and
T.C.S.P. thank the Natural Sciences and Engineering Council of
Canada (NSERC) for support in the form of a discovery grant
(C.B.) and a CGS-D fellowship (T.C.S.P.).
’ REFERENCES
(1) Singh, P. N. D.; Mandel, S. M.; Sankaranarayanan, J.;
Muthukrishnan, S.; Chang, M.; Robinson, R. M.; Lahti, P. M.; Ault,
B. S.; Gudmundsdottir, A. D. J. Am. Chem. Soc. 2007, 129, 16263.
(2) Li, Y. Z.; Kirby, J. P.; George, M. W.; Poliakoff, M.; Schuster,
G. B. J. Am. Chem. Soc. 1988, 110, 8092.
(3) Platz M. S. In Reactive Intermediate Chemistry; Moss, R. A., Platz,
M. S., Jones, M., Jr., Eds.; John Wiley & Sons: New York, 2004;
pp 501À559.
(29) Foresman, J. B.; Head-Gordon, M.; Pople, J. A.; Frisch, M. J.
J. Phys. Chem. 1992, 96, 135.
(30) Bauernschmitt, R.; Ahlrichs, R. Chem. Phys. Lett. 1996, 256,
454.
(31) Ghoshal, S. K.; Sarkar, S. K.; Kastha, G. S. Bull. Chem. Soc. Jpn.
1981, 54, 3556.
9944
dx.doi.org/10.1021/jo200877k |J. Org. Chem. 2011, 76, 9934–9945