Organic & Biomolecular Chemistry
Paper
V. N. Khrustalev, A. F. Mkrtchyan, I. A. Godovikov,
T. V. Strelkova and Y. N. Bubnov, Eur. J. Org. Chem., 2012,
334–344; (d) I. Bosque, J. C. González-Gómez, A. Guijarro,
F. Foubelo and M. Yus, J. Org. Chem., 2012, 77, 10340–
10346; (e) S. Zhao, G. Sirasani, S. Vaddypally, M. J. Zdilla
and R. B. Andrade, Angew. Chem., Int. Ed., 2013, 52, 8309–
8311; (f) A. Feula, S. S. Dhillon, R. Byravan, M. Sangha,
R. Ebanks, M. A. H. Salih, N. Spencer, L. Male, I. Magyary,
W.-P. Deng, F. Müller and J. S. Fossey, Org. Biomol. Chem.,
2013, 11, 5083–5093; (g) B. Su, H. Zhang, M. Deng and
Q. Wang, Org. Biomol. Chem., 2014, 12, 3616–3621;
(h) S. Munagala, G. Sirasani, P. Kokkonda, M. Phadke,
Soc., 1983, 105, 6622–6629; (e) M. Brüggemann,
A. I. McDonald, L. E. Overman, M. D. Rosen, L. Schwink
and J. P. Scott, J. Am. Chem. Soc., 2003, 125, 15284–15285;
(f) W. G. Earley, J. E. Jacobsen, A. Madin, G. P. Meier,
C. J. O’Donnell, T. Oh, D. W. Old, L. E. Overman and
M. J. Sharp, J. Am. Chem. Soc., 2005, 127, 18046–18053;
(g) C. L. Martin, L. E. Overman and J. M. Rohde, J. Am.
Chem. Soc., 2008, 130, 7568–7569; (h) T. B. Dunn,
J. M. Ellis, C. C. Kofink, J. R. Manning and L. E. Overman,
Org. Lett., 2009, 11, 5658–5661; (i) C. L. Martin,
L. E. Overman and J. M. Rohde, J. Am. Chem. Soc., 2010,
132, 4894–4906.
N. Krynetskaia, P. Lu, F. J. Sharom, S. Chaudhury, 18 (a) M. Sugiura, C. Mori and S. Kobayashi, J. Am. Chem. Soc.,
M. D. M. Abdulhameed, G. Tawa, A. Wallqvist, R. Martinez,
W. Childers, M. Abou-Gharbia, E. Krynetskiy and
R. B. Andrade, Bioorg. Med. Chem., 2014, 22, 1148–1155;
2006, 128, 11038–11039; (b) I. Bosque, F. Foubelo and
J. C. Gonzalez-Gomez, Org. Biomol. Chem., 2013, 11, 7507–
7515.
(i) P.-F. Chiang, W.-S. Li, J.-H. Jian, T.-S. Kuo, P.-Y. Wu and 19 (a) M. Rueping and A. P. Antonchick, Angew. Chem., Int.
H.-L. Wu, Org. Lett., 2018, 20, 158–161; ( j) T. Druzhenko,
Y. Skalenko, M. Samoilenko, A. Denisenko, S. Zozulya,
P. O. Borysko, M. I. Sokolenko, A. Tarasov and
P. K. Mykhailiuk, J. Org. Chem., 2018, 83, 1394–1401;
Ed., 2008, 47, 10090–10093; (b) H. Ren and W. D. Wulff,
J. Am. Chem. Soc., 2011, 133, 5656–5659; (c) C. G. Goodman
and J. S. Johnson, J. Am. Chem. Soc., 2015, 137, 14574–
14577.
(k) T. Guo, B.-H. Yuan and W.-J. Liu, Org. Biomol. Chem., 20 K. Gadde, J. Daelemans, B. U. W. Maes and K. Abbaspour
2018, 16, 57–61. Tehrani, RSC Adv., 2019, 9, 18013–18017.
14 For reviews, see: (a) Y. Yamamoto and N. Asao, Chem. Rev., 21 M. Jin, S.-f. Yin and S.-D. Yang, Org. Lett., 2020, 22, 2811–
1993, 93, 2207–2293; (b) D. Enders and U. Reinhold, 2815.
Tetrahedron: Asymmetry, 1997, 8, 1895–1946; (c) R. Bloch, 22 For selected examples of metal-catalyzed allylation/2-aza-
Chem. Rev., 1998, 98, 1407–1438; (d) S. Kobayashi and
H. Ishitani, Chem. Rev., 1999, 99, 1069–1094; (e) G. Alvaro
and D. Savoia, Synlett, 2002, 651–673; (f) S. Kobayashi,
Y. Mori, J. S. Fossey and M. M. Salter, Chem. Rev., 2011,
Cope rearrangement, see: (a) J. Liu, C.-G. Cao, H.-B. Sun,
X. Zhang and D. Niu, J. Am. Chem. Soc., 2016, 138, 13103–
13106; (b) L. Wei, Q. Zhu, L. Xiao, H.-Y. Tao and C.-J. Wang,
Nat. Commun., 2019, 10, 1594.
111, 2626–2704; (g) M. Yus, J. C. González-Gómez and 23 (a) C. C. Malakar, B. U. W. Maes and K. Abbaspour
F. Foubelo, Chem. Rev., 2011, 111, 7774–7854;
(h) F. Foubelo and M. Yus, Eur. J. Org. Chem., 2014, 485–
491.
Tehrani, Adv. Synth. Catal., 2012, 354, 3461–3467;
(b) W. E. Van Beek, J. Van Stappen, P. Franck and
K. Abbaspour Tehrani, Org. Lett., 2016, 18, 4782–4785;
(c) W. E. Van Beek, K. Gadde and K. Abbaspour Tehrani,
Chem. – Eur. J., 2018, 24, 16645–16651; (d) S. A. Shehzadi,
K. Kushwaha, H. Sterckx and K. Abbaspour Tehrani, Adv.
Synth. Catal., 2018, 360, 4393–4401.
15 (a) H. Thies and H. Schoenenberger, Chem. Ber., 1956, 89,
1918–1921; (b) H. Gilman and J. Eisch, J. Am. Chem. Soc.,
1957, 79, 2150–2153; (c) G. Stork and S. R. Dowd, J. Am.
Chem. Soc., 1963, 85, 2178–2180; (d) R. W. Layer, Chem.
Rev., 1963, 63, 489–510; (e) A. R. Katritzky, Q. Hong and 24 M. J. Kamlet, J. L. M. Abboud, M. H. Abraham and
Z. Yang, J. Org. Chem., 1994, 59, 7947–7948; R. W. Taft, J. Org. Chem., 1983, 48, 2877–2887.
(f) A. Desmarchelier, P. Ortiz and S. R. Harutyunyan, Chem. 25 Benzophenone imine is commercially available and can be
Commun., 2015, 51, 703–706.
16 R. M. Horowitz and T. A. Geissman, J. Am. Chem. Soc.,
1950, 72, 1518–1522.
17 For selected articles on the aza-Cope–Mannich reaction,
see: (a) L. E. Overman and M.-A. Kakimoto, J. Am. Chem.
Soc., 1979, 101, 1310–1312; (b) L. E. Overman and
synthesized by the reaction of benzophenone with
ammonia; see: (a) G. Verardo, A. G. Giumanini,
P. Strazzolini and M. Poiana, Synth. Commun., 1988, 18,
1501–1511; (b) G. Voit, M. Holderbaum, T. Witzel
and A. Aumüller, (BASF Aktiengesellschaft, Germany),
US5679855A, 1997.
L. T. Mendelson, J. Am. Chem. Soc., 1981, 103, 5579–5581; 26 R. Wang, M. Ma, X. Gong, X. Fan and P. J. Walsh, Org. Lett.,
(c) L. E. Overman, L. T. Mendelson and L. A. Flippin, 2019, 21, 27–31.
Tetrahedron Lett., 1982, 23, 2733–2736; (d) L. E. Overman, 27 J. Zhu, C. Dai, M. Ma, Y. Yue and X. Fan, Org. Chem. Front.,
M. Kakimoto, M. E. Okazaki and G. P. Meier, J. Am. Chem.
2021, 8, 1227–1232.
This journal is © The Royal Society of Chemistry 2021
Org. Biomol. Chem., 2021, 19, 4067–4075 | 4075