ACS Medicinal Chemistry Letters
Page 6 of 14
deacetylase 6 in oral squamous cell carcinoma. Int. J. Oncol. 2006, 29
(27) Bradner, J. E.; West, N.; Grachan, M. L.; Greenberg, E. F.;
(1), 117-24.
Haggarty, S. J.; Warnow, T.; Mazitschek, R., Chemical phylogenetics
of histone deacetylases. Nat. Chem. Biol. 2010, 6 (3), 238-243.
(28) Hackanson, B.; Rimmele, L.; Benkißer, M.; Abdelkarim, M.;
Fliegauf, M.; Jung, M.; Lübbert, M., HDAC6 as a target for
antileukemic drugs in acute myeloid leukemia. Leuk. Res. 2012, 36
(8), 1055-1062.
(29) Vickers, C. J.; Olsen, C. A.; Leman, L. J.; Ghadiri, M. R.,
Discovery of HDAC inhibitors that lack an active site Zn2+-binding
functional group. ACS Med. Chem. Lett. 2012, 3 (6), 505-508.
(30) Sodji, Q. H.; Patil, V.; Kornacki, J. R.; Mrksich, M.; Oyelere,
A. K., Synthesis and structure–activity relationship of 3-
hydroxypyridine-2-thione-based histone deacetylase inhibitors. J.
Med. Chem. 2013, 56 (24), 9969-9981.
1
2
3
4
5
6
7
8
(10) Aldana-Masangkay, G. I.; Sakamoto, K. M., The role of
HDAC6 in cancer. J. Biomed. Biotechnol. 2011, 2011, 875824.
(11) Park, S. Y.; Jun, J. A.; Jeong, K. J.; Heo, H. J.; Sohn, J. S.;
Lee, H. Y.; Park, C. G.; Kang, J., Histone deacetylases 1, 6 and 8 are
critical for invasion in breast cancer. Oncology reports 2011, 25 (6),
1677-81.
(12) Warrell, R. P., Jr.; He, L. Z.; Richon, V.; Calleja, E.; Pandolfi,
P. P., Therapeutic targeting of transcription in acute promyelocytic
leukemia by use of an inhibitor of histone deacetylase. J. Natl. Cancer
Inst. 1998, 90 (21), 1621-1625.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(13) Grant, S.; Easley, C.; Kirkpatrick, P., Vorinostat. Nat. Rev.
Drug Discovery 2007, 6 (1), 21-22.
(14) Plumb, J. A.; Finn, P. W.; Williams, R. J.; Bandara, M. J.;
Romero, M. R.; Watkins, C. J.; La Thangue, N. B.; Brown, R.,
Pharmacodynamic response and inhibition of growth of human tumor
xenografts by the novel histone deacetylase inhibitor PXD101. Mol.
Cancer Ther. 2003, 2 (8), 721-728.
(15) Laubach, J. P.; Moreau, P.; San-Miguel, J. F.; Richardson, P.
G., Panobinostat for the treatment of multiple myeloma. Clin. Cancer
Res. 2015, 21 (21), 4767-4773.
(16) West, A. C.; Johnstone, R. W., New and emerging HDAC
inhibitors for cancer treatment. J. Clin. Invest. 2014, 124 (1), 30-39.
(17) Khan, N.; Jeffers, M.; Kumar, S.; Hackett, C.; Boldog, F.;
Khramtsov, N.; Qian, X.; Mills, E.; Berghs, S. C.; Carey, N.; Finn, P.
W.; Collins, L. S.; Tumber, A.; Ritchie, J. W.; Jensen, P. B.;
Lichenstein, H. S.; Sehested, M., Determination of the class and
isoform selectivity of small-molecule histone deacetylase inhibitors.
Biochem. J. 2008, 409 (2), 581-589.
(18) Kelly, W. K.; O'Connor, O. A.; Krug, L. M.; Chiao, J. H.;
Heaney, M.; Curley, T.; MacGregore-Cortelli, B.; Tong, W.; Secrist,
J. P.; Schwartz, L.; Richardson, S.; Chu, E.; Olgac, S.; Marks, P. A.;
Scher, H.; Richon, V. M., Phase I study of an oral histone deacetylase
inhibitor, suberoylanilide hydroxamic acid, in patients with advanced
cancer. J. Clin. Oncol. 2005, 23 (17), 3923-3931.
(19) Malvaez, M.; McQuown, S. C.; Rogge, G. A.; Astarabadi, M.;
Jacques, V.; Carreiro, S.; Rusche, J. R.; Wood, M. A., HDAC3-
selective inhibitor enhances extinction of cocaine-seeking behavior in
a persistent manner. Proc. Natl. Acad. Sci. U. S. A. 2013, 110 (7),
2647-2652.
(20) Butler, K. V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.;
Kozikowski, A. P., Rational design and simple chemistry yield a
superior, neuroprotective HDAC6 inhibitor, tubastatin A. J. Am.
Chem. Soc. 2010, 132 (31), 10842-10846.
(21) Padige, G.; Negmeldin, A. T.; Pflum, M. K. H., Development
of an ELISA-based HDAC activity assay for characterization of
isoform-selective inhibitors. J. Biomol. Screening 2015, 20 (10),
1277-1285.
(22) Bieliauskas, A.; Weerasinghe, S.; Pflum, M. H., Structural
requirements of HDAC inhibitors: SAHA analogs functionalized
adjacent to the hydroxamic acid. Bioorg. Med. Chem. Lett. 2007, 17
(8), 2216-2219.
(31) Li, X.; Inks, E. S.; Li, X.; Hou, J.; Chou, C. J.; Zhang, J.;
Jiang, Y.; Zhang, Y.; Xu, W., Discovery of the first N-
hydroxycinnamamide-based histone deacetylase 1/3 dual inhibitors
with potent oral antitumor activity. J. Med. Chem. 2014, 57 (8), 3324-
3341.
(32) Chatterjee, A. K.; Choi, T.-L.; Sanders, D. P.; Grubbs, R. H.,
A General Model for Selectivity in Olefin Cross Metathesis. J. Am.
Chem. Soc. 2003, 125 (37), 11360-11370.
(33) Morris, G. M.; Huey, R.; Lindstrom, W.; Sanner, M. F.;
Belew, R. K.; Goodsell, D. S.; Olson, A. J., AutoDock4 and
AutoDockTools4: automated docking with selective receptor
flexibility. J. Comput. Chem. 2009, 30 (16), 2785-2791.
(34) Hai, Y.; Christianson, D. W., Histone deacetylase 6 structure
and molecular basis of catalysis and inhibition. Nat. Chem. Biol.
2016, 12 (9), 741-747.
(35) Bressi, J. C.; Jennings, A. J.; Skene, R.; Wu, Y.; Melkus, R.;
Jong, R. D.; O'Connell, S.; Grimshaw, C. E.; Navre, M.; Gangloff, A.
R., Exploration of the HDAC2 foot pocket: synthesis and SAR of
substituted N-(2-aminophenyl)benzamides. Bioorg. Med. Chem. Lett.
2010, 20 (10), 3142-3145.
(36) Weerasinghe, S. V. W.; Estiu, G.; Wiest, O.; Pflum, M. K. H.,
Residues in the 11Å channel of histone deacetylase 1 promote
catalytic activity: Implications for designing isoform-selective histone
deacetylase inhibitors. J. Med. Chem. 2008, 51 (18), 5542-5551.
(37) Wambua, M. K.; Nalawansha, D. A.; Negmeldin, A. T.;
Pflum, M. K., Mutagenesis studies of the 14 Å internal cavity of
histone deacetylase 1: Insights towards the acetate escape hypothesis
and selective inhibitor design. J. Med. Chem. 2014, 57 (3), 642-650.
(38) Estiu, G.; Greenberg, E.; Harrison, C. B.; Kwiatkowski, N. P.;
Mazitschek, R.; Bradner, J. E.; Wiest, O., Structural origin of
selectivity in class II-selective histone deacetylase inhibitors. J. Med.
Chem. 2008, 51 (10), 2898-2906.
(39) Kozikowski, A. P.; Chen, Y.; Gaysin, A. M.; Savoy, D. N.;
Billadeau, D. D.; Kim, K. H., Chemistry, biology, and QSAR studies
of substituted biaryl hydroxamates and mercaptoacetamides as HDAC
inhibitors-nanomolar-potency inhibitors of pancreatic cancer cell
growth. ChemMedChem 2008, 3 (3), 487-501.
(40) Wagner, F. F.; Olson, D. E.; Gale, J. P.; Kaya, T.; Weiwer,
M.; Aidoud, N.; Thomas, M.; Davoine, E. L.; Lemercier, B. C.;
Zhang, Y. L.; Holson, E. B., Potent and selective inhibition of histone
deacetylase 6 (HDAC6) does not require a surface-binding motif. J.
Med. Chem. 2013, 56 (4), 1772-1776.
(23) Choi, S. E.; Weerasinghe, S. V.; Pflum, M. K., The structural
requirements of histone deacetylase inhibitors: Suberoylanilide
hydroxamic acid analogs modified at the C3 position display isoform
selectivity. Bioorg. Med. Chem. Lett. 2011, 21 (20), 6139-6142.
(24) Choi, S. E.; Pflum, M. K. H., The structural requirements of
histone deacetylase inhibitors: Suberoylanilide hydroxamic acid
analogs modified at the C6 position. Bioorg. Med. Chem. Lett. 2012,
22 (23), 7084-7086.
(25) Bieliauskas, A. V.; Weerasinghe, S. V. W.; Negmeldin, A. T.;
Pflum, M. K. H., Structural requirements of histone deacetylase
inhibitors: SAHA analogs modified on the hydroxamic acid. Arch.
Pharm. (Weinheim, Ger.) 2016, 349.
(41) Fass, D. M.; Shah, R.; Ghosh, B.; Hennig, K.; Norton, S.;
Zhao, W.-N.; Reis, S. A.; Klein, P. S.; Mazitschek, R.; Maglathlin, R.
L.; Lewis, T. A.; Haggarty, S. J., Short-chain HDAC inhibitors
differentially affect vertebrate development and neuronal chromatin.
ACS Med. Chem. Lett. 2011, 2 (1), 39-42.
(42) KrennHrubec, K.; Marshall, B. L.; Hedglin, M.; Verdin, E.;
Ulrich, S. M., Design and evaluation of 'Linkerless' hydroxamic acids
as selective HDAC8 inhibitors. Bioorg. Med. Chem. Lett. 2007, 17
(10), 2874-2878.
(26) Olson, D. E.; Wagner, F. F.; Kaya, T.; Gale, J. P.; Aidoud, N.;
Davoine, E. L.; Lazzaro, F.; Weiwer, M.; Zhang, Y. L.; Holson, E. B.,
Discovery of the first histone deacetylase 6/8 dual inhibitors. J. Med.
Chem. 2013, 56 (11), 4816-4820.
6
ACS Paragon Plus Environment