pressure to give a brown oil which was triturated with Et2O
(5 mL). A yellow–orange solid slowly separated out which was
filtered off and dried under vacuum; yield ≥70%.
Acknowledgements
The financial support of MIUR (Rome), PRIN 2004, is grate-
fully acknowledged. We thank Daniela Baldan for technical
assistance.
10a: C26H36BClF4N2O4P2Pt (819.88): calc. C 38.09, H 4.43, N
3.42, Cl 4.32; found C 37.86, H 4.47, N 3.55, Cl 4.15%. KM
=
90.5 X−1 mol−1 cm2.
10b: C27H38BClF4N2O4P2Pt (833.90): calc. C 38.89, H 4.59, N
References
3.36, Cl 4.25; found C 39.04, H 4.67, N 3.20, Cl 4.38%. KM
=
88.3 X−1 mol−1 cm2.
1 (a) A. Dedieu, Transition Metal Hydrides, Wiley-VCH, New York,
1992; (b) M. Peruzzini and R. Poli, Recent Advances in Hydride
Chemistry, Elsevier, Amsterdam, 2001.
2 (a) S. Sabo-Etienne and B. Chaudret, Chem. Rev., 1998, 98, 2077–
2091; (b) M. A. Esteruelas and L. A. Oro, Chem. Rev., 1998, 98,
577–588.
3 C. A. McAuliffe and W. Levason, Phosphine, Arsine and Stibine
Complexes of Transition Elements, Elsevier, Amsterdam, 1979.
4 (a) F. R. Hatley, in Comprehensive Organometallic Chemistry, ed.
G. Wilkinson, F. G. A. Stone and E. W. Abel, Pergamon, Oxford,
1982; (b) R. M. Roundhill, in Comprehensive Coordination Chem-
istry, ed. G. Wilkinson and J. A. McCleverty, Pergamon, Oxford,
1987.
5 W. Gerrard and H. R. Hudson, Organophosphorus Compounds, ed.
G. M. Kosolapoff and L. Maier, Wiley, New York, 1973.
6 (a) C. A. Tolman, Chem. Rev., 1977, 77, 313–348; (b) M. M. Rahman,
H.-Y. Liu, K. Eriks, A. Prock and W. P. Giering, Organometallics,
1989, 8, 1–7.
7 (a) C. A. Tolman, R. J. McKinney, W. C. Seidal, J. D. Druline
and W. R. Stevens, Adv. Catal., 1985, 33, 1; (b) R. J. McKinney
and D. C. Roe, J. Am. Chem. Soc., 1986, 108, 5167–5173; (c) J. E.
Ba¨ckvall and O. S. Andell, Organometallics, 1986, 5, 2350–2355;
(d) I. Mamalis, A. F. Noels, E. Puentes, R. Warin, P. Teyssie´, A. J.
Hubert, J. Grandjean, R. Hubin and D. Y. Waddan, J. Catal.,
1986, 102, 357; (e) M. Hodgson, D. Parker, R. J. Taylor and G.
Ferguson, Organometallics, 1988, 7, 1761–1766; (f) G. D. Fallon,
N. J. Fitzmaurice, W. R. Jackson and P. Perlmutter, J. Chem. Soc.,
Chem. Commun., 1985, 4–5.
trans-[PtCl(C6H5N 15NH){PPh(OEt)2}2]BF4 (10a1). This
=
complex was prepared in exactly the same way as the related un-
15
−
labelled compound 10a using [C6H5N≡ N]+BF4 as a reagent;
≥65%.
cis-[PtCl(NH2NH2){PPh(OEt)2}2]BPh4 (11). In a 25-mL
three-necked round-bottomed flask were placed equimolar
amounts of PtCl2{PPh(OEt)2}2 (6) (200 mg, 0.30 mmol) and
silver triflate AgCF3SO3 (77 mg, 0.30 mmol). Dichloromethane
(15 mL) was added into the flask and the reaction mixture
was stirred in the dark for 24 h. After filtration to remove the
AgCl, the solution was cooled to −196 ◦C and then an excess of
NH2NH2 (16 lL, 0.50 mmol) added. The reaction mixture was
brought to room temperature and stirred for 8 h. The solvent
was removed under reduced pressure to give an oil which was
treated with ethanol (3 mL) containing an excess of NaBPh4
(0.151 g, 0.44 mmol). A white solid slowly separated out which
was filtered off and crystallised from CH2Cl2 and ethanol; yield
≥70%.
C44H54BClN2O4P2Pt (978.22): calc. C 54.02, H 5.56, N 2.86,
Cl 3.62; found C 53.88, H 5.64, N 2.93, Cl 3.50%. KM = 53.9
X−1 mol−1 cm2.
8 (a) R. Taube and J. P. Gehrke, J. Organomet. Chem., 1987, 327,
419–427; (b) R. Taube and J. P. Gehrke, J. Organomet. Chem., 1987,
328, 393–401; (c) P. Benn, P. W. Jolly, R. Mynott, B. Raspel, G.
Schenker, K. P. Schick and G. Schroth, Organometallics, 1985, 4,
1945–1953; (d) R. Benn, B. Bu¨ssemeier, S. Holle, P. W. Jolly, R.
Mynott, I. Tkatchenko and G. Wilke, J. Organomet. Chem., 1985,
279, 63–86.
Protonation reactions
The protonation reactions of PtHClP2 complexes was studied
1
by H and 31P NMR measurements at variable temperatures
between −80 and +20 ◦C. A typical experiment involved the
addition of 30–40 mg of the appropriate hydride PtHClP2 in a
screw-cap NMR tube placed in a Vacuum Atmosphere dry-box.
CD2Cl2 (0.5 mL) was added, the solid was dissolved, and the
tube sealed by a screw cap. Incremental amounts of HCl (2 M
solution in Et2O) or HBF4·Et2O were added by microsyringe to
9 (a) R. B. King and S. Ikai, Inorg. Chem., 1979, 18, 949–954; (b) A.
Vassilian and J. C. Bailar, Jr., J. Catal., 1980, 62, 389–395.
10 (a) M. Cattelani, G. P. Chiusoli, G. Salerno and F. Dellatomasina,
J. Organomet. Chem., 1978, 146, C19–C22; (b) H. Takaya, M.
Yamakaua and R. Noyori, Bull. Chem. Soc. Jpn., 1982, 55, 582;
(c) H. Kurosawa and M. Emoto, Chem. Lett., 1985, 1161; (d) B.
◦
the NMR tube cooled to −80 C, which was then transferred
into the probe pre-cooled to −80 ◦C.
˚
Akermark, K. Zetterberg, S. Hansson, B. Krakenberger and A.
Vitagliano, J. Organomet. Chem., 1987, 335, 133–142.
Crystal structure determination of [Pt{P(OEt)3}4](BF4)2 (2)
11 (a) S. Garcia-Fonta´n, A. Marchi, L. Marvelli, R. Rossi, S. Antoniutti
and G. Albertin, J. Chem. Soc., Dalton Trans., 1996, 2779–2785; (b) G.
Albertin, S. Antoniutti, M. Bettiol, E. Bordignon and F. Busatto,
Organometallics, 1997, 16, 4959–4969; (c) G. Albertin, S. Antoniutti,
S. Garcia-Fonta´n, R. Carballo and F. Padoan, J. Chem. Soc., Dalton
Trans., 1998, 2071–2081; (d) G. Albertin, S. Antoniutti, A. Bacchi
and B. Fregolent, Eur. J. Inorg. Chem., 2004, 1922–1938.
The data collection was taken on a SIEMENS Smart CCD area-
detector diffractometer with graphite-monochromated Mo-Ka
radiation at −100 ◦C. Absorption correction was carried out
using SADABS.41
The structure of [Pt{P(OEt)3}4](BF4)2 was solved by direct
methods and refined by full-matrix least-squares based on
F2, using the SHELX-97 package program.42 Non-hydrogen
atoms were refined with anisotropic displacement parameters.
Hydrogen atoms were included in idealised positions and refined
using a constrained model. Atomic scattering factors and
anomalous dispersion corrections for all atoms were taken from
International Tables for X-ray Crystallography.43
12 (a) G. Albertin, S. Antoniutti, E. Bordignon and M. Pegoraro,
J. Chem. Soc., Dalton Trans., 2000, 3575–3584; (b) G. Albertin, S.
Antoniutti and M. Bortoluzzi, Inorg. Chem., 2004, 43, 1328–1335;
(c) G. Albertin, S. Antoniutti, A. Bacchi, C. D’Este and G. Pelizzi,
Inorg. Chem., 2004, 43, 1336–1349; (d) G. Albertin, S. Antoniutti and
S. Pizzol, J. Organomet. Chem., 2004, 689, 1639–1647.
13 (a) G. Albertin, S. Antoniutti, P. Amendola and E. Bordignon,
J. Chem. Soc., Dalton Trans., 1990, 2979–2984; (b) G. Albertin, S.
Antoniutti, E. Bordignon and F. Menegazzo, J. Chem. Soc., Dalton
Trans., 2000, 1181–1189.
14 (a) N. Ahmad, E. Ainscough, T. A. Janas and S. D. Robinson,
J. Chem. Soc., Dalton Trans., 1973, 1148–1150; (b) A. Albinati, P. S.
Pregosin and H. Ru¨egger, Inorg. Chem., 1984, 23, 3223–3229; (c) M. J.
Baker, K. N. Harrison, A. G. Orpen, P. G. Pringle and G. Shaw,
J. Chem. Soc., Dalton Trans., 1992, 2607–2614; (d) A. Crispini, K. N.
Harrison, A. G. Orpen, P. G. Pringle and J. R. Wheatcroft, J. Chem.
Soc., Dalton Trans., 1996, 1069–1076, and references therein.
15 (a) W. R. Meyer and L. M. Venanzi, Angew. Chem., Int. Ed., 1984,
23, 529–530; (b) M. Green, D. M. Grove, J. L. Spencer and F. G. A.
Stone, J. Chem. Soc., Dalton Trans., 1977, 2228–2234.
Crystal data and structure refinement for 2: empirical for-
mula, C24H60B2F8O12P4Pt; formula weight, 1033.31; tempera-
˚
ture, 173(2) K; wavelength, 0.71073 A; crystal system, tetrago-
nal; space group, I4/m; unit cell dimensions: a = 10.6494(16),
˚
b = 10.6494(16), c = 18.205(4) A; Z = 2; absorption coefficient,
3.639 mm−1; reflections collected, 6872; independent reflections,
1287 (Rint = 0.0500); reflections observed (>2r), 1282; final R
indices [I > 2r(I)], R1 = 0.0342, wR2 = 0.0838; R indices (all
data), R1 = 0.0344 wR2 = 0.0839.
CCDC reference number 269224.
See http://dx.doi.org/10.1039/b505453b for crystallographic
data in CIF or other electronic format.
16 Q.-B. Bao, S. J. Geib, A. L. Rheingold and T. B. Brill, Inorg. Chem.,
1987, 26, 3453–3458.
2 6 4 8
D a l t o n T r a n s . , 2 0 0 5 , 2 6 4 1 – 2 6 4 9