10.1002/asia.201701802
Chemistry - An Asian Journal
COMMUNICATION
histidine-promoted ligation, we were keen to see if the
methodology could be utilized in cyclic tetrapeptide synthesis
(Scheme 6). Accordingly, tetrapeptide 11 was synthesized by
standard solution phase peptide synthesis using either TBTU or
PyBOP as the coupling reagent (see SI). The peptide sequence
HPGA was designed to act as a model. Proline was specifically
incorporated in the sequence to induce cisoid conformation that
may facilitate the cyclization. The protection of the imidazole
moiety on histidine was found to be essential during the
synthesis of 11 to ensure reasonable yields. Next, tetrapeptide
11 was first subjected to deprotection using TFA in DCM
followed by dilute ligation conditions to prevent oligomerization.
DMF was used as the solvent to aid solubility and 36 hours of
reaction time were required for complete consumption of the
starting material. Interestingly, six-membered cyclic compound
13 and 14 were obtained in 78% and 80% yield, respectively,
instead of the desired cyclic tetrapeptide 12. There are several
possible mechanisms which could lead to the formation of the
2,5-diketopiperazine products. Based on our proposed
mechanism, we speculate that one possible route could be via
the formation of cyclic intermediate 15, though alternative
pathways are equally likely. Further experiments including
computational calculations would be required to determine the
exact mechanism of diketopiperazine formation.
Acknowledgements
We gratefully acknowledge the financial support from the
Ministry of Science and Technology (MOST 103-2113-M-110-
012-MY2, MOST 105-2738-M-110-001- and MOST 105-2113-M-
110-009-MY2).
Keywords: chemical ligation • acyl transfer • peptide synthesis •
histidine • copper-binding peptides
[1]
[2]
a) A. Greenberg, C. M. Breneman, J. F. Liebman, The Amide Linkage:
Structural Significance in Chemistry, Biochemistry, and Materials
Science, Wiley-Interscience, New York, 2000; b) J. M. Humphrey, A. R.
Chamberlin, Chem. Rev. 1997, 97, 2243-2266.
J. E. Gleason, A. Galaleldeen, R. L. Peterson, A. B. Taylor, S. P.
Holloway, J. Waninger-Saroni, B. P. Cormack, D. E. Cabelli, P. J. Hart,
V. C. Culotta, Proc. Natl. Acad. Sci. 2014, 111, 5866-5871.
S. T. Prigge, R. E. Mains, B. A. Eipper, L. M. Amzel, Cell. Mol. Life Sci.
2000, 57, 1236-1259.
[3]
[4]
L. Hesse, D. Beher, C. L. Masters, G. Multhaup, FEBS Lett. 1994, 349,
109-116.
[5]
[6]
A. I. Bush, Trends Neurosci. 2003, 26, 207-214.
a) A. B. Caballero, L. Terol-Ordaz, A. Espargaró, G. Vázquez, E.
Nicolás, R. Sabaté, P. Gamez, Chem. Eur. J. 2016, 22, 7268-7280; b)
G. Y. Park, J. Y. Lee, R. A. Himes, G. S. Thomas, N. J. Blackburn, K. D.
Karlin, J. Am. Chem. Soc. 2014, 136, 12532-12535; c) A. Trapaidze, C.
Hureau, W. Bal, M. Winterhalter, P. Faller, J. Biol. Inorg. Chem. 2012,
17, 37-47; d) M. Mylonas, J. C. Plakatouras, N. Hadjiliadis, A. Krężel, W.
Bal, Inorg. Chim. Acta 2002, 339, 60-70.
[7]
[8]
J. C. Sheehan, G. P. Hess, J. Am. Chem. Soc. 1955, 77, 1067-1068.
G. Gawne, G. W. Kenner, R. C. Sheppard, J. Am. Chem. Soc. 1969, 91,
5669-5671.
[9]
L. A. Carpino, P. Henklein, B. M. Foxman, I. Abdelmoty, B. Costisella, V.
Wray, T. Domke, A. El-Faham, C. Mügge, J. Org. Chem. 2001, 66,
5245-5247.
[10] a) T. Ben Halima, J. K. Vandavasi, M. Shkoor, S. G. Newman, ACS
Catal. 2017, 7, 2176-2180; b) A. Ojeda-Porras, D. Gamba-Sánchez, J.
Org. Chem. 2016, 81, 11548-11555; c) L. Hu, S. Xu, Z. Zhao, Y. Yang,
Z. Peng, M. Yang, C. Wang, J. Zhao, J. Am. Chem. Soc. 2016, 138,
13135-13138; d) R. M. de Figueiredo, J.-S. Suppo, J.-M. Campagne,
Chem. Rev. 2016, 116, 12029-12122.
[11] X. Yang, V. B. Birman, Org. Lett. 2009, 11, 1499-1502.
[12] S. Biswas, R. Kayaleh, G. G. Pillai, C. Seon, I. Roberts, V. Popov, K. A.
Alamry, A. R. Katritzky, Chem. Eur. J. 2014, 20, 8189-8198.
[13] N. Stuhr-Hansen, T. S. Wilbek, K. Strømgaard, Eur. J. Org. Chem.
2013, 2013, 5290-5294.
Scheme 6. Attempted Synthesis of Cyclic Tetrapeptide by histidine-promoted
ligation. a One possible reaction pathway.
[14] X. Hu, Q. Zhang, W. Wang, Z. Yuan, X. Zhu, B. Chen, X. Chen, ACS
Chem. Neurosci. 2016, 7, 1255-1263.
In summary, a peptide ligation method utilizing the imidazole
moiety of histidine as nucleophilic catalyst has been developed.
Under the optimized conditions, this ligation enabled the
synthesis of a range of histidine-containing dipeptide, tripeptides
and tetrapeptides in moderate to good yields without the need
for protection of histidine sidechain. The ligation method was
found to be not applicable to the synthesis of cyclic tetrapeptides.
We suspect the cause of this outcome might be sequence-
dependent and further studies are underway in our laboratory.
[15] M. Kuczer, A. Majewska, R. Zahorska, Chem. Biol. Drug Des. 2013, 81,
302-309.
[16] S. Chernysh, S. I. Kim, G. Bekker, V. A. Pleskach, N. A. Filatova, V. B.
Anikin, V. G. Platonov, P. Bulet, Proc. Natl. Acad. Sci. 2002, 99, 12628-
12632.
[17] a) A. Zorzi, K. Deyle, C. Heinis, Curr. Opin. Chem. Biol. 2017, 38, 24-
29; b) M. A. Abdalla, J. Nat. Med. 2016, 70, 708-720.
[18] a) Y. Che, G. R. Marshall, J. Med. Chem. 2006, 49, 111-124; b) G. D.
Rose, L. M. Glerasch, J. A. Smith, Adv. Protein Chem. 1985, 37, 1-109.
[19] U. Schmidt, J. Langner, J. Pept. Res. 1997, 49, 67-73.
For internal use, please do not delete. Submitted_Manuscript
This article is protected by copyright. All rights reserved.