Scheme 1 Synthesis of ligand 1 (yields in parenthesis). Reagents and conditions: (a) 2.2 eq. AlCl3/2.2 eq. 5-bromovalericacid chloride (90%), (b) 1) InCl3/
chlorodimethylsilane (86%), 2) Br2 (90%), (c) 1) n-BuLi, 280 °C, 30 min., 2) 10-chloro-2,8-dimethylphenoxaphosphine (48%), (d) 1) 1-methylimidazole,
80 °C, 8 days in CH3CN–toluene (46%), 2) KPF6 (77%).
Table 1 Hydroformylation of 1-octenea
In conclusion, we have reported for the first time, the use of
a phenoxaphosphino-modified ligand in RTILs. This novel
Cycle % Isom.b TOFb,c/h21 l/bb
% Sel.b
catalytic system offers a unique combination of a high activity,
a high selectivity for the preferred linear aldehyde with
complete retention of the catalyst in the ionic phase (see Table
2 for a comparison with some other systems). Besides, the
catalyst proved to be stable for more than two weeks under
ambient conditions, which shows the high stability of the
system. Nevertheless, because of the aforementioned reasons,
storage under inert atmosphere is advisable. Further work to
improve activity, in order to enable selective hydroformylation
of internal olefins, is currently in progress.
1
2
3
4
5
6d
7d
11.8
8.3
7.8
7.7 112
9.6 107
13.3 318
17.7 305
65
88
93
44
49
44
44
38
49
55
86.2
89.8
90.1
90.3
88.1
85.0
80.8
a Conditions: T = 100 °C, p(CO–H2, 1+1) = 17 bar, ligand/Rh = 4,
substrate/Rh
= 988. In none of the experiments was hydrogenation
observed. b Linear over branched ratio, percent isomerisation to 2-octene,
percent linear aldehyde and turnover frequency were determined at ~ 30%
alkene conversion. c Turnover frequency = (mol aldehyde) (mol Rh)21
Financial support from Celanese GmbH is gratefully ac-
knowledged.
h21 d pH2 = 40 bar, pCO = 6 bar.
.
Notes and references
‡ By applying these conditions the bromo-groups were partially substituted
by chloro-groups. This substitution is clearly observed in both 1H NMR and
GC–MS spectra. This substitution did not appear to have a negative effect
on further reactions, although reaction of 1-methylimidazole with bro-
moalkyl groups proceeds much faster than reaction with chloroalkyl
groups.
Scheme 2 Equilibrium between Rh-dimer and Rh–hydride species.
1 Comprehensive information about this field can be found in the many
reviews that have appeared on this subject: D. Zhao, M. Wu, Y. Kou and
E. Min, Catal. Today, 2002, 74, 157; P. Wasserscheid and W. Keim,
Angew. Chem., Int. Ed., 2002, 39, 3772; H. Olivier-Bourbigou and L.
Magna, J. Mol. Catal. A: Chemical, 2002, 419; J. Dupont, C. S. Consorti
and J. Spencer, J. Braz. Chem. Soc., 2000, 11, 337; C. M. Gordon, Appl.
Catal. A, 2001, 222, 101; R. Sheldon, Chem. Commun., 2001, 2399.
2 F. Favre, H. Olivier-Bourbigou, D. Commereuc and L. Saussine, Chem.
Commun., 2001, 1360.
3 P. C. J. Kamer, J. N. H. Reek and P. W. N. M. van Leeuwen, in Rhodium
Catalyzed Hydroformylation, ed. P. W. N. M. van Leeuwen and C.
Claver, Kluwer Academic Publishers, Dordrecht, 2000, ch. 3.
4 D. J. Brauer, K. W. Kottsieper, C. Liek, O. Stelzer, H. Waffenschmidt
and P. Wasserscheid, J. Organomet. Chem., 2001, 630, 177.
5 C. C. Brasse, U. Englert, A. Salzer, H. Waffenschmidt and P.
Wasserscheid, Organometallics, 2000, 19, 3818.
detected at all. Furthermore the catalyst proved to be extremely
stable even under atmospheric conditions without taking special
precautions. Hydroformylation of 1-octene after storing the
ionic liquid containing the catalyst at room temperature under
air for more than 14 days resulted in equal catalysis results as
the previous hydroformylation experiment, although a slightly
higher rate of isomerisation is observed. The increased
isomerisation might be due to formation of acidic impurities
caused by some anion hydrolysis with moisture from air.
Table 2 Comparison of different systemsa
Rh
P
leachingc leachingc
6 P. Wasserscheid, H. Waffenschmidt, P. Machnitzki, K. W. Kottsieper
and O. Stelzer, Chem. Commun., 2001, 451.
Ligand backbone Ref.
TOFb/h21
l/b
(%)
(%)
7 J. Dupont, S. M. Silva and R. F. de Souza, Catal. Lett., 2001, 77,
131.
Phenold
2e
4
5
6
7
240
552
810
52
13
1
16
21
13
2
nr
< 0.2
< 0.07j
nr
nrf
nr
nr
nr
nr
2-Imidazoliumg
Cobaltoceniumh
Xanthenei
8 M. Kranenburg, Y. E. M. van der Burgt, P. C. J. Kamer, P. W. N. M. van
Leeuwen, K. Goubitz and J. Fraanje, Organometallics, 1995, 14, 3081;
L. A. van der Veen, M. D. K. Boele, F. R. Bregman, P. C. J. Kamer, P.
W. N. M. van Leeuwen, K. Goubitz, J. Fraanje, H. Schenk and C. Bo,
J. Am. Chem. Soc., 1998, 120, 11616; L. A. van der Veen, P. H. Keeven,
G. C. Schoemaker, J. N. H. Reek, P. C. J. Kamer, P. W. N. M. van
Leeuwen, M. Lutz and A. L. Spek, Organometallics, 2000, 19, 872.
9 L. A. van der Veen, P. C. J. Kamer and P. W. N. M. van Leeuwen,
Organometallics, 1999, 18, 4765; L. A. van der Veen, P. C. J. Kamer
and P. W. N. M. van Leeuwen, Angew. Chem., Int. Ed., 1999, 38,
336.
Xanthenek
32
Our
system 317
Xanthene
49
< 0.07j
< 0.4j
a Conditions: reaction medium = BMI·PF6, substrate = 1-octene, T = 100
°C, p(CO–H2) = 10–46 bar. b Turnover frequency = (mol aldehyde) (mol
.
Rh)21 h21 c Percentage of leached rhodium/phosphorus of initial intake.
d Monophosphite ligand. e Substrate = 1-hexene, T = 80 °C. f nr = Not
reported. g Monophosphine ligand. h Diphosphine ligand. i Phenylguani-
dium modified diphosphine ligand. j Detection limit of ICP analysis.
k Sulfonated diphosphine ligand.
10 T. Miyai, M. Ueba and A. Baba, Synlett., 1999, 2, 182.
11 A. Castellanos-Páez, S. Castillon, C. Claver, P. W. N. M. van Leeuwen
and W. G. J. de Lange, Organometallics, 1998, 17, 2543.
CHEM. COMMUN., 2002, 3044–3045
3045