6416 Dong et al.
Macromolecules, Vol. 37, No. 17, 2004
techniques in a vacuum line system or a Vacuum Atmospheres
inert-atmosphere glovebox, except for the purification of the
polymers, which was done in an open atmosphere. A typical
experimental procedure for the polymerization of 1(4) is given
below as an example.
Ack n ow led gm en t. The work described in this paper
was partially supported by the Research Grants Council
(Projects N_HKUSR606_03, 604903, HKUST6085/02P,
6121/01P, and 6187/99P) and the University Grants
Committee of Hong Kong through an Area of Excellence
(AoE) Scheme (Project AoE/P-10/01-1A).
Into a baked 20-mL Schlenk tube with a stopcock in the
sidearm was added 257.0 mg (0.63 mmol) of 1(4). The tube
was evacuated under vacuum and then flushed with dry
nitrogen three times through the sidearm. Freshly distilled
toluene (1.5 mL) was injected into the tube to dissolve the
monomer. The catalyst solution was prepared in another tube
by dissolving 12.0 mg of tungsten(VI) chloride and 13.0 mg of
tetraphenyltin in 1.5 mL of toluene. The catalyst solution was
aged at 60 °C for 15 min, to which the monomer solution was
added by use of a hypodermic syringe. The reaction mixture
was stirred at room temperature under nitrogen for 24 h. The
solution was then cooled to room temperature, diluted with 5
mL of chloroform, and added dropwise to 500 mL of acetone
through a cotton filter under stirring. The precipitate was
allowed to stand overnight and was then filtered with a Gooch
crucible. The polymer [P1(4)] was washed with acetone and
dried in a vacuum oven to a constant weight.
Refer en ces a n d Notes
(1) For a review, see O’Neill, M.; Kelly, S. M. Adv. Mater. 2003,
15, 1135-1146.
(2) For reviews, see (a) Forrest, S. R. Nature 2004, 428, 911-
918. (b) de Gans, B. J .; Duineveld, P. C.; Schubert, U. S. Adv.
Mater. 2004, 16, 203-213. (c) Friend, R. H.; Gymer, R. W.;
Holmes, A. B.; Burroughes, J . H.; Marks, R. N.; Taliani, C.;
Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J . L.; Logdlund,
M.; Salaneck, W. R. Nature 1999, 397, 121-128.
(3) Nobel lectures: (a) Heeger, A. J . Angew. Chem., Int. Ed. 2001,
40, 2591-2611. (b) MacDiarmid, A. G. Angew. Chem., Int.
Ed. 2001, 40, 2581-2590. (c) Shirakawa, H. Angew. Chem.,
Int. Ed. 2001, 40, 2575-2580.
(4) For reviews, see (a) Yashima, E.; Maeda, K.; Nishimura, T.
Chem. Eur. J . 2004, 10, 43-51. (b) Sedlacek, J .; Vohlidal, J .
Collect. Czech. Chem. Commun. 2003, 68, 1745-1790. (c)
Nagai, K.; Masuda, T.; Nakagawa, T.; Freeman, B. D.;
Pinnau, Z. Prog. Polym. Sci. 2001, 26, 721-798. (d) Choi, S.
K.; Gal, Y. S.; J in, S. H.; Kim, H. K. Chem. Rev. 2000, 100,
1645-1681. (e) Saunders, R. S.; Cohen, R. E.; Schrock, R. R.
Acta Polym. 1994, 45, 301-307.
(5) For reviews, see (a) Cheuk, K. K. L.; Li, B. S.; Tang, B. Z. In
Encyclopedia of Nanoscience and Nanotechnology; Nalwa, H.
S., Ed.; American Scientific Publishers: CA, 2004; Vol. 8, pp
703-713. (b) Lam, J . W. Y.; Tang, B. Z. J . Polym. Sci. Part
A: Polym. Chem. 2003, 41, 2607-2629. (c) Lam, J . W. Y.;
Chen, J .; Law, C. C. W.; Peng, H.; Xie, Z.; Cheuk, K. K. L.;
Kwok, H. S.; Tang, B. Z. Macromol. Symp. 2003, 196, 289-
300. (d) Xie, Z.; Peng, H.; Lam, J . W. Y.; Chen, J .; Zheng, Y.;
Qiu, C.; Kwok, H. S.; Tang, B. Z. Macromol. Symp. 2003, 195,
179-184. (e) Cheuk, K. K. L.; Li, B. S.; Tang, B. Z. Curr.
Trends Polym. Sci. 2002, 7, 41-55. (f) Tang, B. Z. Polym.
News 2001, 26, 262-272.
(6) (a) Scherman, O. A.; Rutenberg, I. M.; Grubbs, R. H. J . Am.
Chem. Soc. 2003, 125, 8515-8522. (b) Percec, V.; Obata, M.;
Rudick, J . G.; De, B. B.; Glodde, M.; Bera, T. K.; Magonov,
S. N.; Balagurusamy, V. S. K.; Heiney, P. A. J . Polym. Sci.
Part A: Polym. Chem. 2002, 40, 3509-3533. (c) Shinohara,
K.; Aoki, T.; Kanek, T. J . Polym. Sci. Part A: Polym. Chem.
2002, 40, 1689-1697. (d) Nakamura, M.; Tabata, M.; Sone,
T.; Mawatari, Y.; Miyasaka, A. Macromolecules 2002, 35,
2000-2004. (e) Gorman, C. B.; Vest, R. W.; Palovich, T. U.;
Serron, S. Macromolecules 1999, 32, 2, 4157-4165. (f)
D’Amato, R.; Sone, T.; Tabata, M.; Sadahiro, Y.; Russo, M.
V.; Furlani, A. Macromolecules 1998, 31, 8660-8665. (g)
Safir, A. L.; Novak, B. M. Macromolecules 1993, 26, 4072-
4073. (h) Moore, J . S.; Gorman, C. B.; Grubbs, R. H. J . Am.
Chem. Soc. 1991, 113, 1704-1712.
(7) (a) Stagnaro, P.; Conzatti, L.; Costa, G.; Gallot, B.; Tavani,
C.; Valenti, B. Macromol. Chem. Phys. 2003, 204, 714-724.
(b) Gui, T. L.; J in, S. H.; Park, J . W.; Ahn, W. S.; Koh, K. N.;
Kim, S. H.; Gal, Y. S. Opt. Mater. 2003, 21, 637-641. (c)
Schenning, A. P. H. J .; Fransen, M.; Meijer, E. W. Macromol.
Rapid. Commun. 2002, 23, 266-270. (d) Ting, C. H.; Chen,
J . T.; Hsu, C. S. Macromolecules 2002, 35, 1180-1189. (e)
Karoda, H.; Goto, H.; Akagi, K.; Kawaguchi, A. Macromol-
ecules 2002, 35, 1307-1313. (f) Stagnaro, P.; Cavazza, B.;
Trefiletti, V.; Costa, G.; Gallot, B.; Valenti, B. Macromol.
Chem. Phys. 2001, 202, 2065-2073. (g) Koltzenburg, S.;
Stelzer, F.; Nuyken, O. Macromol. Chem. Phys. 1999, 200,
821-827. (h) Koltzenburg, S.; Wolff, D.; Stelzer, F.; Springer,
J .; Nuyken, O. Macromolecules 1998, 31, 9166-9173. (i) Oh,
S.-Y.; Akagi, K.; Shirakawa, H.; Araya, K. Macromolecules
1993, 26, 6203-6206.
(8) (a) Geng, J .; Zhao, X.; Zhou, E.; Li, G.; Lam, J . W. Y.; Tang,
B. Z. Mol. Cryst. Liq. Cryst. 2003, 399, 17-28. (b) Lam, J .
W. Y.; Kong, X.; Dong, Y.; Cheuk, K. K. L.; Xu, K.; Tang, B.
Z. Macromolecules 2000, 33, 5027-5040. (c) Tang, B. Z.;
Kong, X.; Wan, X.; Peng, H.; Lam, W. Y.; Feng, X.; Kwok, H.
S. Macromolecules 1998, 31, 2419-2432.
(9) (a) Lam, J . W. Y.; Law, C. K.; Dong, Y.; Wang, J .; Ge, W.;
Tang, B. Z. Opt. Mater. 2002, 21, 321-324. (b) Lam, J . W.
Y.; Dong, Y.; Luo, J .; Cheuk, K. K. L.; Xie, Z.; Tang, B. Z.
Thin Solid Films 2002, 417, 143-146. (c) Lam, J . W. Y.;
Ch a r a ct er iza t ion Da t a : P 1(4). Grey powder; yield
81.4%. Mw 254 200; Mw/Mn 2.0 (GPC; Table 1, no. 3). 1H
NMR (300 MHz, CDCl3), δ (ppm): 7.94, 7.41, 6.97 (Ar-H),
4.34 (ArCO2CH2), 3.86 (OCH2), 1.74 (ArCO2CH2CH2 and
dCCH2CH2), 1.31 [(CH2)5], 0.90 (CH3). 13C NMR (75 MHz,
CDCl3), δ (ppm): 166.3 (ArCO2), 159.3 (aromatic carbon linked
to OC7H15), 144.8 (aromatic carbons para to CO2), 131.9
(aromatic carbons para to OC7H15), 130.0 (aromatic carbons
ortho to CO2), 128.1 (aromatic carbons meta to OC7H15 and
linked to CO2), 126.1 (aromatic carbons meta to CO2), 114.7
(aromatic carbons ortho to OC7H15), 68.0 (OCH2), 64.8
(ArCO2CH2), 31.8, 29.3, 29.1, 26.0, 22.6, 14.1. UV (THF, 7.4 ×
10-5 mol/L): λmax 295 nm, ꢀmax 2.02 × 104 mol-1 L cm-1
.
P 1(9). Grey powder; yield 80.7%. Mw 22 600; Mw/Mn 8.9
(GPC; Table 2, no. 3). 1H NMR (300 MHz, CDCl3), δ (ppm):
7.99, 7.48, 6.88 (Ar-H), 4.25 (ArCO2CH2), 3.90 (OCH2), 1.92
(ArCO2CH2CH2, dCCH2CH2, and OCH2CH2), 1.30 [(CH2)9],
0.88 (CH3). 13C NMR (75 MHz, CDCl3), δ (ppm): 166.4 (ArCO2),
159.3 (aromatic carbon linked to OC7H15), 144.9 (aromatic
carbons para to CO2), 131.9 (aromatic carbons para to OC7H15),
129.9 (aromatic carbons ortho to CO2), 128.4 (aromatic carbons
meta to OC7H15), 1278.1 (aromatic carbon linked to CO2), 126.2
(aromatic carbons meta to CO2), 114.7 (aromatic carbons ortho
to OC7H15), 67.9 (OCH2), 64.9 (ArCO2CH2), 31.7, 29.2, 29.0,
28.7, 25.9, 22.5, 14.0. UV (THF, 5.9 × 10-5 mol/L): λmax 295
nm, ꢀmax 1.99 × 104 mol-1 L cm-1
.
P 2(4). Grey powder; yield 63.2%. Mw 63 000; Mw/Mn 1.9
(GPC; Table 3, no. 3). 1H NMR (300 MHz, CDCl3), δ (ppm):
7.84, 7.41, 6.84 (Ar-H), 3.88 (ArCO2CH2 and OCH2), 1.74
(ArCO2CH2CH2, dCCH2CH2, and OCH2CH2), 1.31 [(CH2)4],
0.89 (CH3). 13C NMR (75 MHz, CDCl3), δ (ppm): 166.1 (ArCO2),
159.2 (aromatic carbon linked to OC7H15), 144.6 (aromatic
carbons para to CO2), 131.9 (aromatic carbons para to OC7H15),
129.9 (aromatic carbons ortho to CO2), 128.1 (aromatic carbons
meta to OC7H15 and linked to CO2), 126.1 (aromatic carbons
meta to CO2), 114.7 (aromatic carbons ortho to OC7H15), 67.9
(OCH2), 64.3 (ArCO2CH2), 31.8, 29.2, 29.1, 26.0, 22.6, 14.1. UV
(THF, 7.3 × 10-5 mol/L): λmax 295 nm, ꢀmax 2.44 × 104 mol-1
L
cm-1
.
P 2(9). Yellow powder; yield 48.7%. Mw 43 900; Mw/Mn 2.1
(GPC; Table 4, no. 3). 1H NMR (300 MHz, CDCl3), δ (ppm):
8.00, 7.50, 6.90 (Ar-H), 4.26 (ArCO2CH2), 3.93(OCH2), 1.76
(ArCO2CH2CH2 and dCCH2CH2), 1.31 [(CH2)10], 0.89 (CH3).
13C NMR (75 MHz, CDCl3), δ (ppm): 166.4 (ArCO2), 159.3
(aromatic carbon linked to OC7H15), 144.9 (aromatic carbons
para to CO2), 132.0 (aromatic carbons para to OC7H15), 129.9
(aromatic carbons ortho to CO2), 128.4 (aromatic carbons meta
to OC7H15), 128.1 (aromatic carbon linked to CO2), 126.2
(aromatic carbons meta to CO2), 114.8 (aromatic carbons ortho
to OC7H15), 68.0 (OCH2), 64.9 (ArCO2CH2), 31.7, 29.2, 29.0,
28.8, 25.9, 22.5, 14.0. UV (THF, 7.1 × 10-5 mol/L): λmax 295
nm, ꢀmax 2.28 × 104 mol-1 L cm-1
.