C O M M U N I C A T I O N S
Table 3. Stille Cross-Couplings of Primary and Secondary Alkyl
Bromides and Iodides with Aryltrichlorotin Reagents (eq 1)
lowship to D.A.P.), Merck, and Novartis. We thank Luke Fir-
mansjah for assistance with X-ray crystallography.
Supporting Information Available: Experimental procedures and
compound characterization data. This material is available free of charge
References
(1) For reviews, see: (a) Kosugi, M.; Fugami, K. In Handbook of Organo-
palladium Chemistry for Organic Synthesis; Negishi, E.-i., Ed.; Wiley-
Interscience: New York, 2002; pp 263-283. (b) Mitchell, T. N. In Metal-
Catalyzed Cross-Coupling Reactions; Diederich, F., Stang, P. J., Eds.;
Wiley-VCH: New York, 1998; Chapter 4. (c) Farina, V.; Krishnamurthy,
V.; Scott, W. J. Org. React. 1997, 50, 1-652. (d) Espinet, P.; Echavarren,
A. M. Angew. Chem., Int. Ed. 2004, 43, 4704-4734.
(2) Deng, H.; Jung, J.-K.; Liu, T.; Kuntz, K. W.; Snapper, M. L.; Hoveyda,
A. H. J. Am. Chem. Soc. 2003, 125, 9032-9034.
(3) Nicolaou, K. C.; Li, Y.; Sugita, K.; Monenschein, H.; Guntupalli, P.;
Mitchell, H. J.; Fylaktakidou, K. C.; Vourloumis, D.; Giannakakou, P.;
O’Brate, A. J. Am. Chem. Soc. 2003, 125, 15443-15454.
(4) Yu, H.-h.; Xu, B.; Swager, T. M. J. Am. Chem. Soc. 2003, 125, 1142-1143.
(5) “The most toxic organotin chemicals belong to the class of the triorganotin
compounds”: Bulten, E. J.; Meinema, H. A. In Metals and Their
Compounds in the EnVironment; Merian, E., Ed.; VCH: New York, 1991;
Chapter II.30, p 1243.
a Isolated yield (average of two experiments). b Only the 3S isomer is
observed.
other families of alkyl electrophiles (secondary iodides, primary
bromides, and primary iodides; Table 3).
(6) For examples and leading references, see: (a) (Polymer-supported tin
reagents) Kuhn, H.; Neumann, W. P. Synlett 1994, 123-124. Nicolaou,
K. C.; Winssinger, N.; Pastor, J.; Murphy, F. Angew. Chem., Int. Ed. Engl.
1998, 37, 2534-2537. (b) (Fluorous tin reagents) Hoshino, M.; Degenkolb,
P.; Curran, D. P. J. Org. Chem. 1997, 62, 8341-8349. (c) (Catalytic
hydrostannation/Stille reaction) Gallagher, W. P.; Terstiege, I.; Maleczka,
R. E., Jr. J. Am. Chem. Soc. 2001, 123, 3194-3204.
Because a large number of aryl- and alkenyltributylstannanes
are commercially available, we decided to determine if we could
make use of these families of compounds in cross-couplings with
alkyl electrophiles. These stannanes are not themselves suitable
partners for NiCl2/2,2′-bipyridine-catalyzed Stille couplings, but
through a redistribution reaction with SnCl4, they can be converted
into aryl- and alkenyltrichlorotin reagents.17 Upon the addition of
the other components of the cross-coupling reaction, the desired
carbon-carbon bond formation occurs (eqs 2 and 3).
(7) (a) For Stille couplings that employ trichloroorganotin reagents, see:
Roshchin, A. I.; Bumagin, N. A.; Beletskaya, I. P. Tetrahedron Lett. 1995,
36, 125-128. Rai, R.; Aubrecht, K. B.; Collum, D. B. Tetrahedron Lett.
1995, 36, 3111-3114. (b) For Stille couplings that employ other
monoorganotin reagents, see: Fouquet, E.; Pereyre, M.; Rodriguez, A.
L. J. Org. Chem. 1997, 62, 5242-5243.
(8) “Inorganic tin salts are generally acknowledged to be of a low order of
toxicity”: see ref 5.
(9) For leading references, see: (a) Ca´rdenas, D. J. Angew. Chem., Int. Ed.
2003, 42, 384-387. (b) Netherton, M. R.; Fu, G. C. AdV. Synth. Catal.
In press (nickel-catalyzed processes). (c) Powell, D. A.; Fu, G. C. J. Am.
Chem. Soc. 2004, 126, 7788-7789.
(10) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2003, 125, 14726-14727.
(11) Zhou, J.; Fu, G. C. J. Am. Chem. Soc. 2004, 126, 1340-1341.
(12) Copper-, cobalt-, and iron-based methods have been developed for
couplings of more reactive Grignard reagents: (a) Donkervoort, J. G.;
Vicario, J. L.; Jastrzebski, J. T. B. H.; Gossage, R. A.; Cahiez, G.; van
Koten, G. J. Organomet. Chem. 1998, 558, 61-69 (copper). (b) Tsuji,
T.; Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2002, 41, 4137-
4139 (cobalt). (c) Brinker, U. H.; Ko¨nig, L. Chem. Ber. 1983, 116, 882-
893 (iron). (d) Nakamura, M.; Matsuo, K.; Ito, S.; Nakamura, E. J. Am.
Chem. Soc. 2004, 126, 3686-3687 (iron). (e) Nagano, T.; Hayashi, T.
Org. Lett. 2004, 6, 1297-1299 (iron). (f) Martin, R.; Fu¨rstner, A. Angew.
Chem., Int. Ed. 2004, 43, 3955-3957 (iron).
(13) For related three-component couplings of secondary alkyl halides with
olefins and Grignard reagents, see: (a) Mizutani, K.; Shinokubo, H.;
Oshima, K. Org. Lett. 2003, 5, 3959-3961. (b) Terao, J.; Nii, S.;
Chowdhury, F. A.; Nakamura, A.; Kambe, N. AdV. Synth. Catal. 2004,
346, 905-908.
In earlier studies, we suggested that nickel-catalyzed couplings of
secondary alkyl halides may proceed through the initial generation of
an alkyl radical, which then combines with nickel to afford an alkyl-
nickel complex.10,11,18 We subjected secondary bromides 1 and 2
to our Stille conditions and determined that both substrates undergo
cyclization/cross-coupling to yield cis-fused 5,5 ring systems (eq
4); product 3 is formed with a low endo/exo ratio (2:1), whereas 4
is generated with high stereoselection (>20:1). Interestingly, these
diastereoselectivities are independent of ligand structure (e.g., 2,2′-
bipyridine, bathophenanthroline, or 4,4′-dimethoxy-2,2′-bipyridine),
and they correlate with those observed in radical cyclizations of
these compounds,19,20 consistent with the possibility that an initially
formed secondary alkyl radical cyclizes before reacting with nickel.
In summary, we have developed the first catalyst that achieves
Stille cross-couplings of secondary (as well as primary) alkyl
halides. The method employs easily handled and inexpensive
catalyst components (NiCl2 and 2,2′-bipyridine) and, through the
use of monoorganotin reagents, avoids the formation of toxic and
difficult-to-remove triorganotin side products. Efforts to expand the
scope of Stille cross-couplings of alkyl electrophiles, as well as to
achieve catalytic asymmetric reactions, are underway.
(14) Prices from Strem Chemicals (2004-2006 catalog): NiCl2, $47/mol;
NiBr2, $260/mol; Ni(cod)2, $5900/mol.
(15) The role of KOt-Bu may be to generate a hypervalent tin species that
undergoes efficient transmetalation. For early studies of the use of
hypervalent tin compounds in Stille reactions, see: (a) Vedejs, E.; Haight,
A. R.; Moss, W. O. J. Am. Chem. Soc. 1992, 114, 6556-6558. (b) Brown,
J. M.; Pearson, M.; Jastrzebski, J. T. B. H.; van Koten, G. J. Chem. Soc.,
Chem. Commun. 1992, 1440-1441. (c) Martinez, A. G.; Barcina, J. O.;
Cerezo, A. de F.; Subramanian, L. R. Synlett 1994, 1047-1048.
(16) (a) The yields reported in Table 2 are for reactions conducted with 1.0
mmol of the electrophile. An increase in the scale of the process (without
additional optimization) leads to a slightly lower yield (e.g., for entry 1,
1.28 g (63%) of the desired product was obtained when the cross-coupling
was run with 10 mmol of the alkyl bromide). (b) Under these conditions,
Cl3Sn-Bu, secondary alkyl tosylates, and secondary alkyl chlorides are
not suitable cross-coupling partners. (c) The presence of functional groups
on the alkyl halide can lead to significantly diminished reaction efficiency.
For example, certain substrates that contain ketones, secondary amines,
imides, and nitriles cross-couple in <20% yield. (d) The reaction is
moisture-sensitive. (e) According to ICP-MS analysis, the tin contamina-
tion in the product (after chromatography) is less than 5 ppm.
(17) Wood, M. E. In Science of Synthesis; Moloney, M. G., Ed.; Georg Thieme
Verlag: Stuttgart, 2003; Vol. 5, Section 5.2.8.5.2.
(18) For an interesting recent mechanistic study, see: Anderson, T. J.; Jones,
G. D.; Vicic, D. A. J. Am. Chem. Soc. 2004, 126, 8100-8101.
(19) (a) Pandey, G.; Rao, K. S. S. P.; Palit, D. K.; Mittal, J. P. J. Org. Chem.
1998, 63, 3968-3978. (b) Hackmann, C.; Scha¨fer, H. J. Tetrahedron 1993,
49, 4559-4574. (c) Mayer, S.; Prandi, J.; Bamhaoud, T.; Bakkas, S.;
Guillou, O. Tetrahedron 1998, 54, 8753-8770.
(20) For a similar Co-catalyzed reaction of Grignard reagents, see: Wakabayashi,
K.; Yorimitsu, H.; Oshima, K. J. Am. Chem. Soc. 2001, 123, 5374-5375.
Acknowledgment. Support has been provided by the NIH
(NIGMS, R01-GM62871), NSERC of Canada (postdoctoral fel-
JA0436300
9
J. AM. CHEM. SOC. VOL. 127, NO. 2, 2005 511