Very few strategies toward the total synthesis of eudes-
manes, xanthanolides, and guaianolides have been reported,7
but especially Ixerin Y (3) and Arglabin (4) are only available
from natural sources so far.
as the nucleophile (anti/syn ratio 95:5),8b,c seemed to be an
ideal starting point for a subsequent annulation of a seven-
membered ring (Scheme 2).
We have recently developed an asymmetric route to
disubstituted γ-butyrolactones 9 starting with the copper(I)-
bis(oxazolines)-catalyzed cyclopropanation of furan-2-car-
boxylic esters 5 (Scheme 1).8 This way, either enantiomer
Scheme 2. Synthesis of the Core Nucleus of Xanthanolides
Scheme 1. Synthesis of anti-Disubstituted γ-Butyrolactones
98b,c
Introduction of a second allyl group by BF3-mediated
reaction with allylsilanes takes place with moderate diaste-
reoselectivity (3:1 to 4:1) to 10 (major diastereomers shown),
which was set up for ring-closing metathesis (RCM).
By using the ruthenium catalyst 12, which is especially
effective in RCM reactions,9 both 10a and 10b could be
directly converted to the bicyclic derivatives 11a and 11b,
respectively, with no protection of the free hydroxyl group
being necessary. In the course of the ring closure, the
diastereoselectivity changed very little, indicating that both
diastereomers 10a and 10b undergo equally well the me-
tathesis reaction. The major diastereomer of 11b could be
obtained in pure form by recrystallization, and its relative
stereochemistry was established by X-ray crystallography
(Figure 2).
a Conditions: (a) (i) ethyl diazoacetate, Cu(OTf)2 (2 mol %),
(S,S)-tBu-box (2.5 mol %), PhNHNH2 (2 mol %), CH2Cl2, 91%
ee; (ii) recrystallization (pentane), >99% ee, 53%. (b) (i) O3,
CH2Cl2, -78 °C, (ii) dimethyl sulfide, 94%.
of 6 can be readily prepared on a multigram scale in pure
form. Ozonolysis of 6 followed by reductive workup leads
to the aldehyde 7, which undergoes highly diastereoselective
additions with nucleophiles to 8 followed by a retroaldol/
lactonization cascade to 9. Here we would like to report the
application of this strategy toward bi- and tricylic γ-butyo-
lactones as a facile entry to the core nuclei of xanthanolides,
eudesmanolides, and guaianolides.
The lactone 9a, which can be obtained following the
general strategy outlined in Scheme 1 by using allylsilane
(6) (a) Adekenov, S. M.; Mukhametzhanov, M. N.; Kagarlitskii, A. D.;
Kupriyanov, A. N. Khim. Prir. Soedin. 1982, 5, 655-656. (b) Adekenov,
S. M.; Mukhametzhanov, M. N.; Kagarlitskii, A. D.; Agashkin, O. V. IzVest.
Akad. Nauk. Kazak., Ser. Khim. 1983, 2, 54-60. (c) Appendino, G.;
Gariboldi, P.; Menichini, F. Fitoterapia 1991, 62, 275-276. (d) Bottex-
Gauthier, C.; Vidal, D.; Picot, F.; Potier, P.; Menichini, F.; Appendino, G.
Biotechnol. Ther. 1993, 4, 77-98. (e) Shaikenov, T. E.; Adekenov, S. M.;
Williams, R. M.; Baker, F. L.; Prashad, N.; Madden, T. L.; Newman, R.
Oncol. Rep. 2001, 8, 173-179. (f) Wong, H.-F.; Brown, G. D. J. Nat. Prod.
2002, 65, 481-486.
(7) (a) Kuroda, C.; Kobayashi, K.; Koito, A.; Anzai, S. Bull. Chem. Soc.
Jpn. 2001, 74, 1947-1961. (b) Lee, E.; Lim, J. W.; Yoon, C. L.; Sung, Y.;
Kim, Y. W.; Yun, M.; Sangsoo, K. J. Am. Chem. Soc. 1997, 119, 8391-
8392. (c) Kuroda, C.; Ito, K. Bull. Chem. Soc. Jpn. 1996, 69, 9. 2297. (d)
Devreese, A. A.; Clercq, P. J. D.; Vandewalle, M. Tetrahedron Lett. 1980,
21, 4767. (e) Rigby, J. H.; Wilson, J. Z. J. Am. Chem. Soc. 1984, 106,
8217-8224.
Figure 2. X-ray structure of (rac)-11b.
The synthesis of the tricyclic 5,7,5 framework with all-
trans stereochemistry at the ring junctions, found in gua-
ianolides such as 3 and 4, posed an additional challenge for
our synthetic route. Addition of the allylsilane 1310 to 7 does
not only have to proceed under Felkin-Anh control11 at the
aldehyde with respect to the cyclopropyl group, but also must
(8) (a) Bo¨hm, C.; Schninnerl, M.; Bubert, C.; Zabel, M.; Labahn, T.;
Parisini, E.; Reiser, O. Eur. J. Org. Chem. 2000, 2955-2965. (b) Bo¨hm,
C.; Reiser, O. Org. Lett. 2001, 3, 1315-1318. (c) Chhor, R. B.; Nosse, B.;
So¨rgel, S.; Bo¨hm, C.; Seitz, M.; Reiser, O. Chem. Eur. J. 2003, 9, 260-
270.
(9) (a) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999,
1, 953. (b) Chatterjee, A. K.; Grubbs, R. H. Org. Lett. 1999, 1, 1751. (c)
Fu¨rstner, A.; Thiel, O. R.; Ackermann, L.; Schanz, H.-J.; Nolan, S. P. J.
Org. Chem. 2000, 65, 2204-2207.
942
Org. Lett., Vol. 5, No. 6, 2003