Organic Letters
Letter
Wang, F.; Hu, H.; Wang, X.; Wu, H.; Liu, Y. J. Org. Chem. 2014, 79, 3992.
(g) Dutta, U.; Lupton, D. W.; Maiti, D. Org. Lett. 2016, 18, 860.
(h) Chinchilla, R.; Najera, C. Chem. Rev. 2014, 114, 1783. (i) Long, Z.;
Yang, Y.; You, J. Org. Lett. 2017, 19, 2781.
(5) Wang, A.; Jiang, H. J. Am. Chem. Soc. 2008, 130, 5030.
(6) Shen, T.; Zhang, Y.; Liang, Y.-F.; Jiao, N. J. Am. Chem. Soc. 2016,
cleavage of C−C bonds. The proposed mechanism for the
synthesis of the quinolines is also shown as follows: the enamine
A is coordinated with Pd catalysis to generate the intermediate C.
Then, the intermediate D is formed through the intramolecular
nucleophilic addition. Finally, the quinoline is produced through
cleavage of the CC bond.
138, 13147.
In summary, we have demonstrated a novel and convenient
method to synthesize the C2-substituted indoles and quinoline
from 2-vinylanilines and alkynoates through cleavage of C−C
bonds. Furthermore, this protocol shows good functional group
compatibility and various substituted 2-vinylanilines proceed
smoothly with alkynoates, generating the desired products in
moderate to good yields.
(7) (a) Kochanowska-Karamyan, A. J.; Hamann, M. T. Chem. Rev.
2010, 110, 4489. (b) Higuchi, K.; Kawasaki, T. Nat. Prod. Rep. 2007, 24,
843. (c) McGrath, N. A.; Brichacek, M.; Njardarson, J. T. J. Chem. Educ.
2010, 87, 1348. (d) Zuo, Z.; Xie, W.; Ma, D. J. Am. Chem. Soc. 2010, 132,
13226. (e) Vitaku, E.; Smith, D. T.; Njardarson, J. T. J. Med. Chem. 2014,
57, 10257. (f) Stempel, E.; Gaich, T. Acc. Chem. Res. 2016, 49, 2390.
(8) (a) Kumar, D.; Kumar, N. M.; Akamatsu, K.; Kusaka, E.; Harada,
H.; Ito, T. Bioorg. Med. Chem. Lett. 2010, 20, 3916. (b) Dolusic, E.;
Larrieu, P.; Moineaux, L.; Stroobant, V.; Pilotte, L.; Colau, D.; Pochet,
L.; Eynde, B. V. d.; Masereel, B.; Wouters, J.; Frederick, R. J. Med. Chem.
2011, 54, 5320. (c) Robinson, M. W.; Overmeyer, J. H.; Young, A. M.;
Erhardt, P. W.; Maltese, W. A. J. Med. Chem. 2012, 55, 1940.
(d) Venkatesan, A. M.; Santos, O. D.; Ellingboe, J.; Evrard, D. A.;
Harrison, B. L.; Smith, D. L.; Scerni, R.; Hornby, G. A.; Schechter, L. E.;
Andree, T. H. Bioorg. Med. Chem. Lett. 2010, 20, 824. (e) Steuer, C.;
Gege, C.; Fischl, W.; Heinonen, K. H.; Bartenschlager, R.; Klein, C. D.
Bioorg. Med. Chem. 2011, 19, 4067. (f) Venkatesan, P.; Sumathi, S. J.
Heterocycl. Chem. 2010, 47, 81.
(9) (a) Austin, J. F.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002, 124,
1172. (b) Humphrey, G. R.; Kuethe, J. T. Chem. Rev. 2006, 106, 2875.
(c) Kruger, K.; Tillack, A.; Beller, M. Adv. Synth. Catal. 2008, 350, 2153.
(d) Platon, M.; Amardeil, R.; Djakovitch, L.; Hierso, J.-C. Chem. Soc. Rev.
2012, 41, 3929. (e) Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111, PR215.
(f) Shiri, M. Chem. Rev. 2012, 112, 3508. (g) Inman, M.; Moody, C. J.
Chem. Sci. 2013, 4, 29. (h) Kim, H.; Chang, S. ACS Catal. 2016, 6, 2341.
(i) Ruiz-Castillo, P.; Buchwald, S. L. Chem. Rev. 2016, 116, 12564.
(j) Liu, X. D.; Tong, K.; Zhang, A. H.; Tan, R. X.; Yu, S. Y. Org. Chem.
Front. 2017, 4, 1354.
(10) (a) Tsvelikhovsky, D.; Buchwald, L. J. Am. Chem. Soc. 2010, 132,
14048. (b) Cacchi, S.; Fabrizi, G. Chem. Rev. 2011, 111, PR215.
(c) Seregin, I. V.; Gevorgyan, V. Chem. Soc. Rev. 2007, 36, 1173−1193.
(d) Shiri, M. Chem. Rev. 2012, 112, 3508. (e) Cacchi, S.; Fabrizi, G.
Chem. Rev. 2005, 105, 2873. (f) Sandtorv, A. H. Adv. Synth. Catal. 2015,
357, 2403. (g) Ishikura, M.; Abe, T.; Choshi, T.; Hibino, S. Nat. Prod.
Rep. 2015, 32, 1389. (h) Tanner, M. E. Nat. Prod. Rep. 2015, 32, 88.
(11) (a) Xiang, L.; Niu, Y.; Pang, X.; Yang, X.; Yan, R. Chem. Commun.
2015, 51, 6598. (b) Yan, R.; Li, X.; Yang, X.; Kang, X.; Xiang, L.; Huang,
G. Chem. Commun. 2015, 51, 2573. (c) Yuan, B.; Zhang, F.; Li, Z.; Yang,
S.; Yan, R. Org. Lett. 2016, 18, 5928. (d) Kang, X.; Yan, R.; Yu, G.; Pang,
X.; Liu, X.; Li, X.; Xiang, L.; Huang, G. J. Org. Chem. 2014, 79, 10605.
(e) Pang, X.; Xiang, L.; Yang, X.; Yan, R. Adv. Synth. Catal. 2016, 358,
321. (f) Yang, X.; Yan, R. Org. Biomol. Chem. 2017, 15, 3571. (g) An, Z.;
She, Y.; Yang, X.; Pang, X.; Yan, R. Org. Chem. Front. 2016, 3, 1746.
(12) (a) Michael, J. P. Nat. Prod. Rep. 2001, 18, 543. (b) Rouffet, M.; de
Oliveira, C. A. F.; Udi, Y.; Agrawal, A.; Sagi, I.; McCammon, J. A.;
Cohen, S. M. J. Am. Chem. Soc. 2010, 132, 8232. (c) Bhalla, V.; Vij, V.;
Kumar, M.; Sharma, P. R.; Kaur, T. Org. Lett. 2012, 14, 1012.
(13) (a) Severin, R.; Doye, S. Chem. Soc. Rev. 2007, 36, 1407.
(b) Pohlki, F.; Doye, S. Chem. Soc. Rev. 2003, 32, 104.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
Experimental methods and 1H and 13C NMR spectra of all
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was supported by National Natural Science
Foundation of China (21672086), Gansu Province Science
Foundation for Youths (1606RJYA260), and the Fundamental
Research Funds for the Central Universities (lzujbky-2018-39).
REFERENCES
■
(1) (a) Park, Y. J.; Park, J.-W.; Jun, C.-H. Acc. Chem. Res. 2008, 41, 222.
(b) Najera, C.; Sansano, J. M. Angew. Chem., Int. Ed. 2009, 48, 2452.
(c) Masarwa, A.; Marek, I. Chem. - Eur. J. 2010, 16, 9712. (d) Murakami,
M.; Matsuda, T. Chem. Commun. 2011, 47, 1100. (e) Souillart, L.;
Cramer, N. Chem. Rev. 2015, 115, 9410. (f) Lei, Z.-Q.; Li, H.; Li, Y.;
Zhang, X.-S.; Chen, K.; Wang, X.; Sun, J.; Shi, Z.-J. Angew. Chem., Int. Ed.
2012, 51, 2690. (g) Tang, C.; Jiao, N. Angew. Chem., Int. Ed. 2014, 53,
6528. (h) Gao, Q.; Liu, S.; Wu, X.; Zhang, J.; Wu, A. Org. Lett. 2015, 17,
2960. (i) Zhou, W.; Fan, W.; Jiang, Q.; Liang, Y.-F.; Jiao, N. Org. Lett.
2015, 17, 2542. (j) Saidalimu, I.; Suzuki, S.; Tokunaga, E.; Shibata, N.
Chem. Sci. 2016, 7, 2106.
(2) (a) Zhang, C.; Feng, P.; Jiao, N. J. Am. Chem. Soc. 2013, 135, 15257.
(b) Chen, F.; Wang, T.; Jiao, N. Chem. Rev. 2014, 114, 8613.
(3) For reviews and selected examples: (a) Miyamoto, K.; Tada, N.;
Ochiai, M. J. Am. Chem. Soc. 2007, 129, 2772. (b) Travis, B. R.; Narayan,
R. S.; Borhan, B. J. J. Am. Chem. Soc. 2002, 124, 3824. (c) Martinez, C.;
Muniz, K. Angew. Chem., Int. Ed. 2012, 51, 7031. (d) Wang, T.; Jiao, N.
Acc. Chem. Res. 2014, 47, 1137. (e) Wang, T.; Jiao, N. J. Am. Chem. Soc.
2013, 135, 11692. (f) Shen, T.; Wang, T.; Qin, C.; Jiao, N. Angew. Chem.,
Int. Ed. 2013, 52, 6677. (g) Qin, C.; Feng, P.; Ou, Y.; Shen, T.; Wang, T.;
Jiao, N. Angew. Chem., Int. Ed. 2013, 52, 7850. (h) Jun, C.-H. Chem. Soc.
Rev. 2004, 33, 610.
(14) (a) Brannock, K. C.; Bell, A.; Burpitt, R. D.; Kelly, C. A. J. Org.
Chem. 1964, 29, 801. (b) Ichihara, A.; Kimura, R.; Yamada, S.; Sakamura,
S. J. Am. Chem. Soc. 1980, 102, 6353. (c) Sheldrake, H. M.; Wallace, T.
W.; Wilson, C. P. Org. Lett. 2005, 7, 4233.
(4) (a) Wu, W.; Jiang, H. Acc. Chem. Res. 2012, 45, 1736. (b) Liu, Q.;
Chen, P.; Liu, G. ACS Catal. 2013, 3, 178. (c) Sheng, W.-B.; Jiang, Q.;
Luo, W.-P.; Guo, C.-C. J. Org. Chem. 2013, 78, 5691. (d) Okamoto, N.;
Ishikura, M.; Yanada, R. Org. Lett. 2013, 15, 2571. (e) Jiang, Q.; Zhao, A.;
Xu, B.; Jia, J.; Liu, X.; Guo, C. J. Org. Chem. 2014, 79, 2709. (f) Sun, J.;
D
Org. Lett. XXXX, XXX, XXX−XXX