A R T I C L E S
Reich et al.
Scheme 1
recent work has provided substantial insights into the conse-
quences of chelation,,1a-d,3b,4b,c,7a,8-10 these applications are still
hampered by a lack of knowledge about the strength and even
the occurrence of chelation. There is no question from single-
crystal X-ray structures that organolithium reagents with pendant
alkoxy and amino groups are chelated under poorly solvated or
solvent-free conditions.11 It is, however, less clear how well
such chelating groups compete with commonly used ethereal
solvents such as THF.1e,14
Table 1. Thermodynamic and Kinetic Data for Chelated
Aryllithiums and Model Compounds
Results and Discussion
Syntheses. The lithium reagents were prepared by Li/Sn
exchange of the appropriate o-trimethylstannyl compounds,
typically in diethyl or dimethyl ether solution, from which most
of the lithium reagents could be purified by crystallization. The
bromo precursors of the tin derivatives were not used directly
because of interference from lithium bromide (if t-BuLi was
used) or 1- and 2-bromobutane (if n- or sec-BuLi was used).
‡
compd
R
KMD/M-1
∆G°a (T /°C)
∆G DMa (T/°C)
8
-H
210
1.7
0.19
<0.23
-1.5 (-128)b
-0.2 (-135)e
0.4 (-140)b
8.3c (-101)d
-CH3
7
9
1
2
3
4
5
6
-CH2CH3
6.8b (-139)b
-(CH2)2-iPrf
g0.6 (-125)b
6
To facilitate NMR studies, the Li enriched isotopomers7d of
e-2.6 (-131)b >12.5g,h (-36)b
f
-CH2NMe2
>17 000
226
<0.23
>35 400
11 000
12
all compounds were prepared and the amines were synthesized
in 15N enriched form. The synthesis of the amines is illustrated
for 2 in Scheme 1. Compound 3 was prepared analogously from
3-(2-bromophenyl)propanoic acid. The ethers 4 and 5 were
prepared by straightforward methods.15
-(CH2)2NMe2
-(CH2)3NMe2
-CH2OMe
-1.5 (-137)b
g0.6 (-130)i
9.4k (-107)i
e-3.0 (-127)b g9.5g (-80)j
-(CH2)2OMe
-(CH2)3OMe
-2.8 (-121)b
-0.7 (-141)b
10.7k (-83)b
8.8j(-107)i
a Free energies in kcal/mol for kDM and KDM. ∆G° is the free energy
difference between a dimer and two molecules of monomer. b 3:2 THF/
Et2O. c Ref 1i. d THF. e 4:1 THF/Et2O. f Ref 1h. g Coalescence of the 1:2:
3:2:1 quintet of the C-Li carbon. h The rate is bimolecular. i 3:2:1 THF/
Me2O/Et2O. j 3:2:1 Me2O/THF/Et2O. k Exchange of monomer and dimer
(4) (a) Klumpp, G. W. Recl. TraV. Chim. Pays-Bas 1986, 105, 1-21. (b)
Luitjes, H.; Schakel, M.; Schmitz, R. F.; Klumpp, G. W. Angew. Chem.,
Int. Ed. Engl. 1995, 34, 2152-2153. (c) Schmitz, R. F.; Schakel, M.; Vos,
M.; Klumpp, G. W. Chem. Commun. 1998, 1099-1100. (d) Klumpp, G.
W.; Geurink, P. J. A.; Spek, A. L.; Duisenberg, A. J. M. J. Chem. Soc.,
Chem. Commun. 1983, 814-816. (e) Moene, W.; Schakel, M.; Hoogland,
G. J. M.; de Kanter, F. J. J.; Klumpp, G. W.; Spek, A. L. Tetrahedron
Lett. 1990, 31, 2641-2642. (f) Moene, W.; Vos, M.; de Kanter, F. J. J.;
Klumpp, G. W. J. Am. Chem. Soc. 1989, 111, 3463-3465. (g) Klumpp,
G. W.; Vos M.; de Kanter, F. J. J.; Slob, C.; Krabbendam, H.; Spek, A. L.
J. Am. Chem. Soc. 1985, 107, 8292-8294. (h) Vos, M.; de Kanter, F. J. J.;
Schakel, M.; van Eikema Hommes, N. J. R.; Klumpp, G. W. J. Am. Chem.
Soc. 1987, 109, 2187-2188. (i) Geurink, P. J. A.; Klumpp, G. W. J. Am.
Chem. Soc. 1986, 108, 538-539.
6
signals in Li NMR spectrum.
Solution Structures. All of the lithium reagents were studied
6
7
by low temperature 13C, Li, Li, and, where appropriate, 31P
NMR spectroscopy in mixed solvents containing THF with
dimethyl and/or diethyl ether as cosolvents to allow operation
at temperatures below the freezing point of THF (-108.5 °C).
The effects of cosolvents N,N,N′,N′-tetramethylethylenediamine
(TMEDA), N,N,N′,N′′,N′′-pentamethyldiethylenetriamine (PM-
DTA) and hexamethylphosphoric triamide (HMPA15) were also
studied, since these provided a window into the strength and
nature of chelation and aggregation.
(5) Paquette, L. A.; Kuo, L. H.; Tae, J. J. Org. Chem. 1998, 63, 2010-2021.
Smyj, R. P.; Chong, M. J. Org. Lett. 2000, 3, 2903-2906.
(6) Lamothe, S.; Chan, T. H. Tetrahedron Lett. 1991, 32, 1847-1850. Hartley,
R. C.; Lamothe, S.; Chan, T. H. Tetrahedron Lett. 1993, 34, 1449-1452.
(7) (a) Fraenkel G.; Cabral J.; Lanter C.; Wang, J. J. Org. Chem. 1999, 64,
1302-1310. Fraenkel G.; Duncan J. H.; Wang J. J. Am. Chem. Soc. 1999,
121, 432-443. (b) For an insightful discussion of dynamic processes
involving C-Li multiplets in monomeric aryllithium reagents, see: Fraen-
kel, G.; Subramanian, S.; Chow, A. J. Am. Chem. Soc. 1995, 117, 6300-
6307. (c) Fraenkel, G.; Chow, A.; Winchester, W. R. J. Am. Chem. Soc.
1990, 112, 6190-6198. (d) For many organolithium reagents, especially
aggregated ones, quadrupolar broadening is severe enough with 7Li (92.6%
natural abundance) that C-Li coupling cannot be resolved. The 6Li
analogues show little or no quadrupolar broadening and thus couplings are
more easily seen. Fraenkel, G.; Fraenkel, A. M.; Geckle, M. J.; Schloss, F.
J. Am. Chem. Soc. 1979, 101, 4745-4747.
Table 1 summarizes the thermodynamic and kinetic data we
have gathered for compounds 1-9. Table 2 presents chemical
shift and coupling information. In particular, the 13C chemical
shifts of the C-Li carbon provided a clear definition of the
aggregation state of the lithium reagents,15 the monomers have
C-1 at ca. δ 195 and dimers at ca. δ 187. These assignments
were supported by the C-Li coupling observed, a 1:1:1 triplet
(8) Sato, D.; Kawasaki, H.; Shimada, I.; Arata, Y.; Okamura, K.; Date, T.;
Koga, K. J. Am. Chem. Soc. 1992, 114, 761-763.
(9) Arvidsson, P. I.; Hilmersson, G.; Ahlberg, P. J. Am. Chem. Soc. 1999,
121, 1883-1887.
6
(10) Intramolecular comparison of a 5- and 6-ring ether chelated vinyllithium
reagent suggested that the 5-ring chelate is stronger. Mitchell, T. N.;
Reimann, W. J. Organomet. Chem. 1987, 322, 141-150.
for the monomeric Li enriched compounds, and a 1:2:3:2:1
quintet for the dimers. The observation of a quintet does not
rule out cyclic trimers. In cases where two aggregates were
present (2, 5, 6), we determined their concentration dependence
to establish the molecularity.
(11) (a) 5-ring ether-chelated structures have been found for 1-lithio-1-(2-
methoxyphenyl)-3,3-diphenylallene (Dem′yanov, P.; Boche, G.; Marsch,
M.; Harms, K.; Fyodorova, G.; Petrosyan, V. Liebigs Ann. 1995, 457-
460), 3-lithio-1-methoxybutane[4d] and 2,2-bis(methoxymethyl)-1-lithio-
propane.[4e] (b) 5- and 6-ring amine-chelated structures have been found
for 1,1-bis(dimethylaminomethyl)-2-lithiopropane,[4f] N-(2-lithiocyclohex-
enyl)-N,N′,N′-trimethyl-1,3-propanediamine,[12a] and o-dialkylaminophenyl-
lithium.[13a]
Lithium NMR Spectra. The 6Li/7Li NMR spectra were also
very informative in determining the solution structure. Figure
6
(12) (a) Polt, R. L.; Stork, G.; Carpenter, G. B.; Williard, P. G. J. Am. Chem.
Soc. 1984, 106, 4276-4277. (b) Waldmu¨ller, D.; Kotsatos, B.; Nichols,
M. A.; Williard, P. G. J. Am. Chem. Soc. 1997, 119, 5479-5480. (c)
Williard, P. G.; Liu, Q.-Y. J. Am. Chem. Soc. 1993, 115, 3380-3381.
(13) (a) Rietveld, M. H. P.; Wehman-Ooyevaar, I. C. M.; Kapteijn, G. M.; Grove,
D. M.; Smeets, W. J. J.; Kooijman, H.; Spek, A. L.; van Koten, G.
Organometallics 1994, 13, 3782-3787. (b) Jastrzebski, J. T. B. H.; van
Koten, G.; Konijn, M.; Stam, C. H. J. Am. Chem. Soc. 1982, 104, 5490-
5492. Wehman, E.; Jastrzebski, J. T. B. H.; Ernsting, J.-M.; Grove, D. M.;
van Koten, G. J. Organomet. Chem. 1988, 353, 145-155.
1 summarizes the Li spectra obtained. These spectra will be
discussed in more detail in the individual sections below.
Model Systemss2-Ethylphenyllithium (7). A principal
focus of our studies is the relationship between chelation affects
and the level of aggregation. To allow a distinction to be made
(15) See the Supporting Information for NMR spectra, simulations, and exchange
matrixes.
(14) McDougal, P. G.; Rico, J. G. J. Org. Chem. 1987, 52, 4817-4819.
9
3510 J. AM. CHEM. SOC. VOL. 125, NO. 12, 2003