C O M M U N I C A T I O N S
B.; Veciana, J. In Magnetism: Molecules to Materials II; Miller, J. S.,
Drillon, M., Eds.; Wiley-VCH: New York, 2001; pp 1-60. For
ferrimagnetic approaches: (c) Hosokoshi, Y.; Katoh, K.; Nakazawa, Y.;
Nakano, H.; Inoue, K. J. Am. Chem. Soc. 2001, 123, 7921-7922. (d)
Shiomi, D.; Kanaya, T.; Sato, K.; Mito, M.; Takeda, K.; Takui, T. J. Am.
Chem. Soc. 2001, 123, 11823-11824. For CT approaches: (e) Breslow,
R. In Magnetic Properties of Organic Materials; Lahti, P. M., Ed.; Marcel
Dekker: New York, 1999; pp 27-60. (f) Sugimoto, T. In Molecular
Magnetism; Itoh, K., Kinoshita, M., Eds.; Kodansha or Gordon and
Breach: Tokyo, 2000; pp 223-239.
(2) (a) Yamaguchi, K.; Namimoto, H.; Fueno, T. Chem. Phys. Lett. 1990,
166, 408-414. (b) Yamaguchi, K.; Okumura, M.; Fueno, T.; Nakasuji,
K. Synth. Met. 1991, 41-43, 3631-3634.
(3) (a) Sugano, T.; Fukasawa, T.; Kinoshita, M. Synth. Met. 1991, 41-43,
3281-3284. (b) Sakurai H.; Izuoka A.; Sugawara T. J. Am. Chem. Soc.
2000, 122, 9723-9734.
Figure 2. EPR spectra (Ia,b) and temperature dependence of øpT of
1+‚ClO4-‚CH2Cl2 (II). (Ia) Measured at 123 K in a frozen butyronitrile
matrix with ν0 ) 9.251147 GHz. (Ib) The simulation spectrum with
parameters |D/hc| ) 0.00725 cm-1, |E/hc| ) 0.0011 cm-1, gxx ) 2.0065,
(4) Nakamura, Y.; Koga, N.; Iwamura, H. Chem. Lett. 1991, 69-72.
(5) (a) Nakazaki, J.; Ishikawa, Y.; Izuoka, A.; Sugawara, T.; Kawada, Y.
Chem. Phys. Lett. 2000, 319, 385-390. (b) Nakazaki, J.; Matsushita, M.
M.; Izuoka, A.; Sugawara, T. Tetrahedron Lett. 1999, 40, 5027-5030.
(c) Kumai, R.; Matsushita, M. M.; Izuoka, A.; Sugawara, T. J. Am. Chem.
Soc. 1994, 116, 4523-4524. (d) Kumai, R.; Izuoka, A.; Sugawara, T.
Mol. Cryst. Liq. Cryst. 1993, 232, 151-154.
gyy ) 2.0020, gzz ) 2.0040, gav ) [(gxx + gyy +gzz2)/3]1/2 ) 2.004, (II)
Measured for a powder sample under B ) 0.1 T. The solid line represents
the simulation curve with J1/kB ) 700 K and J2/kB ) -18 K.
2
2
(6) (a) Sugimoto, T.; Yamaga, S.; Nakai, M.; Ohmori, K.; Tsuji, M.; Nakatsuji,
H.; Fujita, H.; Yamauchi, J. Chem. Lett. 1993, 1361-1364. (b) Sugimoto,
T.; Yamaga, S.; Nakai, M.; Tsuji, M.; Nakatsuji, H.; Hosoito, N. Chem.
Lett. 1993, 1817-1820.
(6-50 K). The linearity indicates either the quasi-degeneracy of
singlet and triplet states, ∆EST/kB , 6 K, or a triplet ground state
with a large S-T gap, ∆EST/kB . 50 K.
A much clearer insight was obtained by measuring the magnetic
susceptibility of 1+ (Figure 2-II). The øpT value at room temperature
was 0.98 emu K mol-1, which is close to that expected for S ) 1
state (gav ) 2.004). The value decreased with lowering temperature,
which is ascribable to intermolecular magnetic interactions. The
temperature dependence of øpT clearly demonstrates a large S-T
(7) Nordio, P. L.; Soos, Z. G.; McConnell, H. M. Annu. ReV. Phys. Chem.
1966, 17, 237-260.
(8) Izuoka, A.; Hiraishi, M.; Abe, T.; Sugawara, T.; Sato, K.; Takui, T. J.
Am. Chem. Soc. 2000, 122, 3234-3235.
(9) Okamoto, T.; Terada, E.; Kozaki, M.; Uchida, M.; Kikukawa, S.; Okada,
K. Org. Lett. 2003, 5, 373-376.
(10) Cauquis, G.; Delhomme, H.; Serve, D. Tetrahedron Lett. 1971, 4649-
4652.
(11) Crystallographic data for 1: monoclinic, space group C2/c, a ) 37.16(1)
Å, b ) 6.127(2) Å, c ) 24.091(9) Å, â ) 111.392(7)°, V ) 5106.8(3)
Å3, Z ) 8, Fcalcd ) 1.273 g/cm3, T ) 113 K, R ) 0.070, Rw ) 0.088,
GOF ) 1.142, Crystallographic data for 1+‚ClO4-‚CH2Cl2, Triclinic, space
group P-1, a ) 10.282(1) Å, b ) 11.232(1) Å, c ) 15.539(2) Å, R )
80.70(1), â ) 77.67(1)°, γ ) 64.483(7), V ) 1577.2(3) Å3, Z ) 2, Fcalcd
) 1.419 g/cm3, T ) 113 K, R ) 0.045, Rw ) 0.065, GOF ) 0.988.
gap of ∆EST/kB . 300 K. The spin Hamiltonian, H ) -2J1(SNN1
‚
SDPhz1 + SNN2‚SDPhz2) - 2J2SDPhz1‚SDPhz2, was used to analyze the
øpT value on the basis of the molecular packing in the crystal (Figure
1-IIb). The øpT values were reproduced using parameters of J1/kB
g +700 K and J2/kB ) -18 ( 0.6 K (solid line in Figure 2-II).15
The large J1 is qualitatively understandable with the spin polariza-
tion mechanism via a large positive spin density of the C2-carbon
of dihydrophenazine radical cation.10,16 The intramolecular ferro-
magnetic interaction J1 falls within the same range as those of
general CT-type intermolecular magnetic interactions.7
(12) Caneschi, A.; Laugier, J.; Rey, P. J. Chem. Soc., Perkin Trans. 1 1987,
1077-1079.
(13) Two additional short contacts were observed between atoms bearing
smaller spin densities: One was between the neighboring dimers through
the O2 and the C3-attached hydrogen (2.85 Å), resulting in a dimer chain
in the [011] direction. The other was between the O2 atom and the C13-
attached hydrogen (2.41 Å) of another neighboring 1+, giving a 1+ chain
in the [010] direction.
To obtain theoretical insights into the exchange interaction in
this system, DFT calculations were performed using the Gaussian
98 program (UB3LYP/6-31G*).17 The geometry of the radical
cation was taken from X-ray structure analysis. For the calculation
of low-spin singlet state, the trial UHF wave function was generated
by the broken symmetry (BS) approach.18-20 The triplet state had
a lower energy than the BS-singlet state. The energy difference
between the triplet and the BS-singlet state was 1.98 kcal/mol,
which corresponds to J/kB ) +498 K or J/kB ) +987 K, depending
on the estimation methodologies.19,20
In sum, we have found that 1+ is a stable triplet species with
strong intramolecular ferromagnetic coupling. The following ad-
ditional findings are noteworthy: (1) the corresponding 5,10-
dimethyl derived radical cation was unstable and slowly decom-
posed even under inert atmosphere. (2) The radical cation of the
2,7-bis[(nitronyl nitroxide)-2-yl]-substituted 1+-analogue had a clean
EPR spectrum with a quartet pattern but was too unstable to isolate
in pure form. The details will be published elsewhere. Preparation
of charge-transfer complexes and related magnetic materials based
on 1+ is in progress.
(14) Bondi, A. J. Phys. Chem. 1964, 68, 441-451.
(15) The øpT values in the high-temperature region (>100 K) were reproducible
with J1/kB g +700 K. The unsatisfactory fitting of the low-temperature
region (<50 K) may be due to the other contacts described in ref 13 being
neglected. Trials with some accessible conventional models taking into
account weaker contacts, i.e. a two-spin singlet-triplet model with a mean
field (θ) or an S ) 1 chain model did not improve the fitting.
(16) Dihydrophenazine radical cation has nonalternant spin distribution, where
both the nitrogen and the C2-carbon have large positive spin densities.
See also Supporting Information.
(17) The total energy E (hartree) and S2 before spin projection were E )
-1567.36685314 with S2 ) 2.0685 for triplet state, E ) -1567.36369601
with S2 ) 1.0594 for the BS-singlet state using Gaussian 98, revision
A.9; Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb,
M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, J. A., Jr.;
Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A.
D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi,
M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.;
Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.;
Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.;
Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.;
Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith,
T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.;
Challacombe, M.; Gill, P. M. W.; Johnson, B. G.; Chen, W.; Wong, M.
W.; Andres, J. L.; Head-Gordon, M.; Replogle, E. S.; Pople, J. A.
Gaussian, Inc., Pittsburgh, PA, 1998.
(18) (a) Yamaguchi, K. Chem. Phys. Lett. 1975, 33, 330-335. (b) Noodleman,
L. J. Chem. Phys. 1981, 74, 5737-5743. (c) Adao, C.; Barone, V.; Bencini,
A.; Totti, F.; Ciofini, I. Inorg. Chem. 1999, 38, 1996-2004. (d) Okada,
K.; Nagao, O.; Mori, H.; Kozaki, M.; Shiomi, D.; Sato, K.; Takui, T.;
Kitagawa, Y.; Yamaguchi, K. Inorg. Chem. 2003, 42, 3221-3228.
Supporting Information Available: X-ray crystallographic files
(CIF) and a list of spin-densities (PDF). This material is available free
(19) Ruiz, E.; Cano, J.; Alvarez, S.; Alemany, P. J. Comput. Chem. 1999, 20,
1391-1400.
(20) (a) Yamanaka, S.; Kawakami, T.; Nagao, H.; Yamaguchi, K. Chem. Phys.
Lett. 1994, 231, 25-33. (b) Yamaguchi, K. Int. J. Quantum Chem. 2002,
90, 370-385.
References
(1) For general approaches: (a) Lahti, P. M.; Ed. Magnetic Properties of
Organic Materials; Marcel Dekker: New York, 1999. (b) Amabilino, D.
JA0367748
9
J. AM. CHEM. SOC. VOL. 126, NO. 1, 2004 59