Page 9 of 10
Journal of the American Chemical Society
2013, 49, 1506–1508. (d) Königs, C. D. F.; Klare, H. F. T.;
(27) Note that the E–S bonding interactions in hydroborane
1
2
3
4
5
6
7
8
Oestreich, M. Angew. Chem., Int. Ed. 2013, 52, 10076–10079. (e)
Hermeke, J.; Klare, H. F. T.; Oestreich, M. Chem. – Eur. J. 2014,
20, 9250–9254. (f) Stahl, T.; Hrobárik, P.; Königs, C. D. F.; Ohki,
Y.; Tatsumi, K.; Kemper, S.; Kaupp, M.; Klare, H. F. T.; Oestreich,
M. Chem. Sci. 2015, 6, 4324–4334. (g) Omann, L.; Oestreich, M.
Angew. Chem., Int. Ed. 2015, 54, 10276–10279. (h) Metsänen, T. T.;
Oestreich, M. Organometallics 2015, 34, 543–546. (i) Bähr, S.;
Simonneau, A.; Irran, E.; Oestreich, M. Organometallics 2016, 35,
925–928.
(12) Stahl, T.; Klare, H. F. T.; Oestreich, M. J. Am. Chem. Soc.
2013, 135, 1248–1251.
(13) Stahl, T.; Müther, K.; Ohki, Y.; Tatsumi, K.; Oestreich, M.
J. Am. Chem. Soc. 2013, 135, 10978–10981.
and hydrosilane adducts are more covalent and thereby in line
with the electronegativities of corresponding main‐group atoms.
(28) Note that the partial atomic charges may be viewed as an
approximate measure of the electrophilicity only when steric
effects are absent or constant across the investigated series.
(29) However, saturating the coordination sphere of
aluminum in parent hydride such as in [(tBuO)3AlH]– hinders
the σ(Ru–H)→Al donation and is computed to result in an
adduct with the complete Al–H bond separation (Table S3 in the
Supporting Information).
9
(30) Christe, K. O.; Dixon, D. A.; McLemore, D.; Wilson, W.
W.; Sheehy, J. A.; Boatz, J. A. J. Fluorine Chem. 2000, 101, 151–153.
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
1
(31) As also confirmed by H NMR measurements and NMR
(14) Omann, L.; Königs, C. D. F.; Klare, H. F. T.; Oestreich, M.
Acc. Chem. Res. 2017, 50, 1258–1269.
shift calculations, the hydride shift for monomeric DIBAL–H is
predicted to appear at (1H) 4.9 ppm while only two hydride
signals at (1H) 3.3 and 3.1 ppm are observed in C6D6; similarly,
the computed 27Al NMR resonance for monomeric DIBAL–H is
about 130 ppm downfield as compared to that found
experimentally for DIBAL–H in toluene‐d8 (Table S9 in the
Supporting Information).
(15) Complex ([1b]+)2[B12Cl12]2– could not be isolated in pure
form (see the Supporting Information).
2
(16) Coupling constant of [1a∙Cy2BH]+[BArF ]– is JH,P = 19 Hz.
4
See Ref. 13 for further details. Coupling constant of
2
[1a∙EtMe2SiH]+[BArF ]– is JH,P = 50 Hz. See Ref. 11f for further
4
(32) Hydrodefluorination is also observed with [1a]+[BArF ]– as
details.
4
(17) Akitt, J. W. Prog. Nucl. Magn. Reson. Spectrosc. 1989, 21, 1–
catalyst in the absence of alkoxide, further limiting the process
to just the para‐CF3‐substituted aniline.
149.
(18) Performance of two‐component ZORA‐SO method in 27Al
NMR shift calculations for a broad range of Al(III) compounds is
demonstrated in Table S7 and Figure S7 in the Supporting
Information. The experimental 27Al NMR data are collected in:
Benn, R.; Janssen, E.; Lehmkuhl, H.; Rufínska, A. J. Organomet.
Chem. 1987, 333, 155–168.
(33) The formation of DIBAL–F was detected by 19F NMR
spectroscopy: (19F) –148.9, –148.1, –146.1 ppm in C6D6; cf. Ref. 9
in CDCl3.
(34) Olah, G. A.; Olah, J. A.; Ohyama, T. J. Am. Chem. Soc.
1984, 106, 5284–5290.
(35) (a) Tsuchimoto, T.; Tobita, K.; Hiyama, T.; Fukuzawa, S.‐i.
J. Org. Chem. 1997, 62, 6997–7005. (b) Mertins, K.; Iovel, I.;
Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005, 44,
238–242. (c) Iovel, I.; Mertins, K.; Kischel, J.; Zapf, A.; Beller, M.
Angew. Chem. Int. Ed. 2005, 44, 3913–3917. (d) Rueping, M.;
Nachtsheim, B. J.; Ieawsuwan, W. Adv. Synth. Catal. 2006, 348,
1033–1037. (e) Schäfer, G.; Bode, J. W. Angew. Chem., Int. Ed.
2011, 50, 10913–10916. (f) Champagne, P. A.; Benhassine, Y.;
Desroches, J. Paquin, J.‐F. Angew. Chem., Int. Ed. 2014, 53, 13835–
13839. (g) Mo, X.; Yakiwchuk, J.; Dansereau, J.; McCubbin, J. A.;
Hall, D. G. J. Am. Chem. Soc. 2015, 137, 9694–9703. (h) Ricardo,
C. L.; Mo, X.; McCubbin, J. A.; Hall, D. G. Chem. – Eur. J. 2015, 21,
4218–4223. (i) Vuković, V. D.; Richmond, E.; Wolf, E.; Moran, J.
Angew. Chem., Int. Ed. 2017, 56, 3085–3089.
(36) (a) For an intermolecular version see: Douvris, C.;
Ozerov, O. V. Science 2008, 321, 1188–1190. (b) For an
intramolecular version see: Allemann, O.; Duttwyler, S.;
Romanato, P.; Baldridge, K. K.; Siegel, J. S. Science 2011, 332, 574–
577.
(37) Lühmann, N.; Panisch, R.; Müller, T. Appl. Organomet.
Chem. 2010, 24, 533–537.
(19) The surprisingly small deshielding in [1a∙iBu2AlH]+ can be
rationalized by an extra stabilization of the alumenium ion by
electron donation from multiple ligand atoms (see the structural
characterization and discussion below).
(20) (a) Postigo, L.; Maestre, M. d. C.; Mosquera, M. E. G.;
Cuenca, T.; Jiménez, G. Organometallics 2013, 32, 2618–2624. (b)
Kischel, M.; Dornberg, G.; Krautscheid, H. Inorg. Chem. 2014, 53,
1614–1623.
(21) (a) Lamberti, M.; D’Auria, I.; Mazzeo, M.; Milione, S.;
Bertolasi, V.; Pappalardo, D. Organometallics 2012, 31, 5551–5560.
(b) For further crystal structures containing Al–S bonds see: Uhl,
W.; Vester, A.; Hiller, W. J. Organomet. Chem. 1993, 443, 9–17.
(22) (a) Young, J. D.; Khan, M. A.; Powell, D. R.; Wehmschulte,
R. J. Eur. J. Inorg. Chem 2007, 1671–1681. (b) Uhl, W.; Appelt, C.;
Backs, J.; Klöcker, H.; Vinogradov, A.; Westenberg, H. Anorg.
Allg. Chem. 2014, 640, 106–109.
(23) A modest correlation (R2=0.91) with DFT optimized Ru‒H
bond lengths was observed (Figure S5 in the Supporting
Information). A similar correlation but of less quality (R2=0.84)
is also seen for 1H hydride shifts, which tend to be more
deshielded for adducts with completely broken E‒H bond
(Figure S6 in the Supporting Information).
(24) Pyykkö, P. J. Phys. Chem. A 2015, 119, 2326–2337.
(25) Steinke, T.; Cokoja, M.; Gemel, C.; Kempter, A.; Krapp, A.;
Frenking, G.; Zenneck, U.; Fischer, R. A. Angew. Chem., Int. Ed.
2005, 44, 2943–2946.
(38) (a) Zhu, J.; Pérez, M.; Caputo, B. C.; Stephan, D. W.
Angew. Chem., Int. Ed. 2016, 55, 1417–1421. (b) Zhu, J.; Pérez, M.;
Stephan, D. W. Angew. Chem., Int. Ed. 2016, 55, 8448–8451.
(39) Yartys, V. A.; Denys, R. V.; Maehlen, J. P.; Frommen, C.;
Fichtner, M.; Bulychev, B. M.; Emerich, H. Inorg. Chem. 2007,
46, 1051–1055.
(26) Müther, K.; Hrobárik, P.; Hrobáriková, V.; Kaupp, M.;
Oestreich, M. Chem. – Eur. J. 2013, 19, 16579–16594.
ACS Paragon Plus Environment