Organic Letters
Letter
coupling reagents for the synthesis of pharmaceuticals. Org. Process
Res. Dev. 2016, 20, 140−177. (e) Carey, J. S.; Laffan, D.; Thomson,
C.; Williams, M. T. Analysis of the reactions used for the preparation
of drug candidate molecules. Org. Biomol. Chem. 2006, 4, 2337−2347.
(f) Roughley, S. D.; Jordan, A. M. The medicinal chemist’s toolbox:
an analysis of reactions used in the pursuit of drug candidates. J. Med.
Chem. 2011, 54, 3451−3479.
Scheme 3. Plausible Catalytic Cycle
(2) For recent reviews on amide N−C acyl cleavage, see: (a) Shi, S.;
Nolan, S. P.; Szostak, M. Well-Defined Palladium(II)-NHC
Precatalysts for Cross-Coupling Reactions of Amides and Esters by
Selective N−C/O−C Cleavage. Acc. Chem. Res. 2018, 51, 2589−
2599. (b) Meng, G.; Szostak, M. N-Acyl-Glutarimides: Privileged
Scaffolds in Amide N-C Bond Cross-Coupling. Eur. J. Org. Chem.
2018, 2018, 2352−2365. (c) Liu, C.; Szostak, M. Twisted Amides:
From Obscurity to Broadly Useful Transition-Metal-Catalyzed
Reactions by N-C Amide Bond Activation. Chem. - Eur. J. 2017, 23,
7157−7173.
(3) (a) Valeur, E.; Bradley, M. Amide bond formation: beyond the
myth of coupling reagents. Chem. Soc. Rev. 2009, 38, 606−631. (b) Li,
G.; Szostak, M. Highly selective transition-metal-free transamidation
of amides and amidation of esters at room temperature. Nat. Commun.
2018, 9, 4165. (c) Zhou, T.; Li, G.; Nolan, S. P.; Szostak, M.
[Pd(NHC)(acac)Cl]: Well-Defined, Air-Stable, and Readily Available
Precatalysts for Suzuki and Buchwald-Hartwig Cross-coupling
(Transamidation) of Amides and Esters by N-C/O-C Activation.
Org. Lett. 2019, 21, 3304−3309.
from Mo(CO)6. At the same time, the nitroarene is reduced by
Mo(CO)6 in the presence of water to give aromatic amine.8
The nucleophilic attack of amine on the acyl−palladium
intermediate releases the desired product and Pd(II) for the
next catalytic cycle.
(4) (a) de Figueiredo, R. M.; Suppo, J. S.; Campagne, J. M.
Nonclassical Routes for Amide Bond Formation. Chem. Rev. 2016,
116, 12029−12122. (b) Pattabiraman, V. R.; Bode, J. W. Rethinking
amide bond synthesis. Nature 2011, 480, 471−479. (c) Allen, C. L.;
Williams, J. M. Metal-catalysed approaches to amide bond formation.
Chem. Soc. Rev. 2011, 40, 3405−3415. (d) Guo, X.; Facchetti, A.;
Marks, T. J. Imide-and amide-functionalized polymer semiconductors.
In summary, we have developed a palladium-catalyzed
aminocarbonylation of aryl boronic acids with nitroarenes for
the synthesis of amides. A range of substituted amides were
prepared in moderate to good yield from easily available aryl
boronic acids and nitroarenes. No external reductant or
oxidant is needed in this procedure. The reaction proceeded in
a CO-gas-free and redox-economic manner, where Mo(CO)6
was used as a solid CO source and nitroarene was used as a
cheap and abundant nitrogen source.
Chem. Rev. 2014, 114, 8943−9021. (e) Brennfuhrer, A.; Neumann,
̈
H.; Beller, M. Palladium-catalyzed carbonylation reactions of aryl
halides and related compounds. Angew. Chem., Int. Ed. 2009, 48,
4114−4133. (f) Friis, S. D.; Skrydstrup, T.; Buchwald, S. L. Mild Pd-
catalyzed aminocarbonylation of (hetero) aryl bromides with a
palladacycle precatalyst. Org. Lett. 2014, 16, 4296−4299. (g) Xu, T.;
Alper, H. Pd-catalyzed chemoselective carbonylation of aminophenols
with iodoarenes: alkoxycarbonylation vs aminocarbonylation. J. Am.
Chem. Soc. 2014, 136, 16970−16973. (h) Skogh, A.; Friis, S. D.;
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Information is available free of charge on the
̈
Skrydstrup, T.; Sandstrom, A. Palladium-Catalyzed Aminocarbonyla-
tion in Solid-Phase Peptide Synthesis: A Method for Capping,
Cyclization, and Isotope Labeling. Org. Lett. 2017, 19, 2873−2876.
(i) Zhang, J.; Ma, Y.; Ma, Y. Synthesis of Secondary Amides through
the Palladium(II)-Catalyzed Aminocarbonylation of Arylboronic
Acids with Amines or Hydrazines and Carbon Monoxide. Eur. J.
Org. Chem. 2018, 2018, 1720−1725. (j) Zhang, J.; Hou, Y.; Ma, Y.;
Szostak, M. Synthesis of Amides by Mild Palladium-Catalyzed
Aminocarbonylation of Arylsilanes with Amines Enabled by Copper-
(II) Fluoride. J. Org. Chem. 2019, 84, 338−345.
General comments, general procedure, optimization
details, analytic data, and NMR spectra (PDF)
AUTHOR INFORMATION
■
Corresponding Author
ORCID
(5) For selected examples on aminocarbonylation reactions with
nitro compounds, see: (a) Peng, J.-B.; Geng, H.-Q.; Li, D.; Qi, X.;
Ying, J.; Wu, X.-F. Palladium-Catalyzed Carbonylative Synthesis of
α,β-Unsaturated Amides from Styrenes and Nitroarenes. Org. Lett.
2018, 20, 4988−4993. (b) Cheung, C. W.; Leendert Ploeger, M.; Hu,
X. Amide Synthesis via Nickel-Catalysed Reductive Aminocarbony-
lation of Aryl Halides with Nitroarenes. Chem. Sci. 2018, 9, 655−659.
(c) Peng, J.-B.; Geng, H.-Q.; Wang, W.; Qi, X.; Ying, J.; Wu, X.-F.
Palladium-catalyzed four-component carbonylative synthesis of 2,3-
disubstituted quinazolin-4(3H)-ones: Convenient methaqualone
preparation. J. Catal. 2018, 365, 10−13. (d) Zhou, F.; Wang, D. S.;
Guan, X.; Driver, T. G. Nitroarenes as the Nitrogen Source in
Intermolecular Palladium-Catalyzed Aryl C-H Bond Aminocarbony-
lation Reactions. Angew. Chem., Int. Ed. 2017, 56, 4530−4534.
(e) Jana, N.; Zhou, F.; Driver, T. G. Promoting Reductive Tandem
Reactions of Nitrostyrenes with Mo(CO)6 and a Palladium Catalyst
to Produce 3H-indoles. J. Am. Chem. Soc. 2015, 137, 6738−6741.
Funding
We acknowledge the financial supports from NSFC
(21801225, 21772177).
Notes
The authors declare no competing financial interest.
REFERENCES
■
(1) For selected recent reviews, see: (a) Roy, S.; Roy, S.; Gribble, G.
W. Metal-catalyzed amidation. Tetrahedron 2012, 68, 9867−9923.
(b) Pattabiraman, V. R.; Bode, J. W. Rethinking amide bond
synthesis. Nature 2011, 480, 471−479. (c) de Figueiredo, R. M.;
Suppo, J. S.; Campagne, J. M. Nonclassical routes for amide bond
formation. Chem. Rev. 2016, 116, 12029−12122. (d) Dunetz, J. R.;
Magano, J.; Weisenburger, G. A. Large-scale applications of amide
C
Org. Lett. XXXX, XXX, XXX−XXX