Organic Letters
Letter
(c) Lal, G. S.; Pez, G. P.; Pesaresi, R. J.; Prozonic, F. M.; Cheng, H. J. Org.
Chem. 1999, 64, 7048.
(7) (a) Fujikawa, K.; Fujioka, Y.; Kobayashi, A.; Amii, H. Org. Lett.
2011, 13, 5560. (b) Ge, S.; Chaładaj, W.; Hartwig, J. F. J. Am. Chem. Soc.
2014, 136, 4149.
(8) Fujiwara, Y.; Dixon, J. A.; Rodriguez, R. A.; Baxter, R. D.; Dixon, D.
D.; Collins, M. R.; Blackmond, D. G.; Baran, P. S. J. Am. Chem. Soc. 2012,
134, 1494.
(9) (a) Fier, P. S.; Hartwig, J. F. J. Am. Chem. Soc. 2012, 134, 5524.
(b) Prakash, G. K. S.; Ganesh, S. K.; Jones, J.-P.; Kulkarni, A.; Masood,
K.; Swabeck, J. K.; Olah, G. A. Angew. Chem., Int. Ed. 2012, 51, 12090.
(c) Jiang, X.-L.; Chen, Z.-H.; Xu, X.-H.; Qing, F.-L. Org. Chem. Front.
2014, 1, 774. (d) Matheis, C.; Jouvin, K.; Goossen, L. J. Org. Lett. 2014,
16, 5984.
(10) For the preparation of difluoromethylated arenes through direct
fluorination of benzylic C−H bonds, see: (a) Xia, J.-B.; Zhu, C.; Chen,
C. J. Am. Chem. Soc. 2013, 135, 17494. (b) Xu, P.; Guo, S.; Wang, L.;
Tang, P. Angew. Chem., Int. Ed. 2014, 53, 5955. During our manuscript
preparation, a Pd/Ag-catalyzed difluoromethylation of aryl bromides
with TMSCF2H was reported: (c) Gu, Y.; Leng, X.; Shen, Q. Nat.
Commun. 2014, 5, 5405.
(11) (a) Eujen, R.; Hoge, B.; Brauer, D. J. J. Organomet. Chem. 1996,
519, 7. (b) Burton, D. J.; Hartgraves, G. A. J. Fluorine Chem. 2007, 128,
1198. See also ref 5.
(12) (a) Feng, Z.; Chen, F.; Zhang, X. Org. Lett. 2012, 14, 1938.
(b) Feng, Z.; Min, Q.-Q.; Xiao, Y.-L.; Zhang, B.; Zhang, X. Angew. Chem.,
Int. Ed. 2014, 53, 1669. (c) Xiao, Y.-L.; Guo, W.-H.; He, G.-Z.; Pan, Q.;
Zhang, X. Angew. Chem., Int. Ed. 2014, 53, 9909.
(13) For selected examples employing bromodifluoroacetate as an
electrophilic difluoromethylating reagent, see: (a) Taguchi, T.;
Kitagawa, O.; Morikawa, T.; Nishiwaki, T.; Uehara, H.; Endo, H.;
Kobayashi, Y. Tetrahedron Lett. 1986, 27, 6103. (b) Araki, K.; Inoue, M.
Tetrahedron 2013, 69, 3913. (c) Belhomme, M.-C.; Poisson, T.;
Pannecoucke, X. Org. Lett. 2013, 15, 3428.
the overall catalytic cycle, the hydroquinone is essential for
promotion of the reaction. However, the exact role of
hydroquinone remains elusive at this stage. As for the role of
Fe(acac)3 in the overall catalytic cycle, one possibility is that a Fe-
based difluorocarbene species20 may be generated in the
reaction, which is being subsequently transferred onto Pd to
produce VII. What is more, taking into account the fact that the
aryl group of difluoromethylated arene does not derive from the
palladium complex [ArPd(Ln)X] (IX), the proposed mechanism
illustrated in path II21 for the current reaction can be excluded.
In conclusion, we have demonstrated an unprecedented
example of Pd-catalyzed difluoromethylation of arylboronic acids
with low-cost ethyl bromodifluoroacetate. The significant
features of this reaction are its high efficiency, broad substrate
scope, and excellent functional group compatibility, even toward
bromide and hydroxyl groups. Applications of the reaction led to
difluoromethylated biologically relevant molecules with high
efficiency, thus providing a useful protocol for drug discovery and
development. Preliminary mechanistic studies reveal that a
palladium catalytic cycle via a difluorocarbene pathway is
involved in the reaction. To the best of our knowledge, this is
the first example of a transition-metal-catalyzed carbon−
difluorocarbon single bond (C−CF2) formation via a difluor-
ocarbene pathway. We believe that it will not only prompt the
research in the field of transition-metal difluorocarbene
chemistry but also be useful for related chemistry.
ASSOCIATED CONTENT
* Supporting Information
■
S
The Supporting Informationis also is available free of charge on
(14) Very recently, a reaction of bromodifluoroacetate with phenols to
prepare difluoromethoxyarene via difluorocarbene pathway was
reported; see: (a) Rafferty, S. W.; Eisner, J. R.; Moore, W. R.;
Schotzinger, R. J.; Hoekstra, W. J. Bioorg. Med. Chem. Lett. 2014, 24,
2444. (b) Stock, N. S.; Chen, A. C.-Y.; Bravo, Y. M.; Jacintho, J. D.; Scott,
J. M.; Stearns, B. A.; Clark, R. C.; Truong, Y. P. WO 2013134562 A1,
2013.
Detailed experimental procedures and characterization
data for new compounds (PDF)
AUTHOR INFORMATION
Corresponding Author
■
(15) Furstner, A.; Martin, R.; Krause, H.; Seidel, G.; Goddard, R.;
Lehmann, C. W. J. Am. Chem. Soc. 2008, 130, 8773.
Notes
(16) An alternative possibility of the role of styrene is that it can
facilitate the reductive elimination by displacing ligands on the
coordination sphere of PdII intermediates.
(17) (a) Wheaton, G. A.; Burton, D. J. J. Fluorine Chem. 1976, 8, 97.
(b) Duan, J. X.; Su, D. B.; Chen, Q.-Y. J. Fluorine Chem. 1993, 61, 279.
(c) Levin, V. V.; Zemtsov, A. A.; Struchkova, M. I.; Dilman, A. D. J.
Fluorine Chem. 2015, 171, 97.
(18) Mehta, V. P.; Greaney, M. F. Org. Lett. 2013, 15, 5036.
(19) Yang, Z.-Y.; Wiemers, D. M.; Burton, D. J. J. Am. Chem. Soc. 1992,
114, 4402.
The authors declare no competing financial interest.
ACKNOWLEDGMENTS
■
This work was financially supported by the National Basic
Research Program of China (No. 2012CB821600), the National
Natural Science Foundation of China (21425208, 2141002,
21172242 and 21332010), and SIOC.
(20) Crespi, A. M.; Shriver, D. F. Organometallics 1985, 4, 1830.
(21) (a) Bakhmutov, V.; Bozoglian, F.; Gomez, K.; Gonzalez, G.;
Grushin, V. V.; Maacgregor, S. A.; Martin, E.; Miloserdov, F. M.;
Novikov, M. A.; Panetier, J. A.; Romashov, L. V. Organometallics 2012,
31, 1315. (b) Xiao, Q.; Zhang, Y.; Wang, J. Acc. Chem. Res. 2013, 46, 236.
REFERENCES
■
(1) For recent reviews, see: (a) Muller, K.; Faeh, C.; Diederich, F.
Science 2007, 317, 1881. (b) Furuya, T.; Kamlet, A. S.; Ritter, T. Nature
2011, 473, 470.
̈
(2) (a) Erickson, J. A.; McLoughlin, J. I. J. Org. Chem. 1995, 60, 1626.
(b) Meanwell, N. A. J. Med. Chem. 2011, 54, 2529.
(3) (a) Wang, J.; Sanchez-Rosello, M.; Acen, J. L.; del Pozo, C.;
Sorochinsky, A. E.; Fustero, S.; Soloshonok, V. A.; Liu, H. Chem. Rev.
2014, 114, 2432.
(4) For selected reviews, see: (a) Tomashenko, O. A.; Grushin, V. V.
Chem. Rev. 2011, 111, 4475. (b) Besset, T.; Schneider, C.; Cahard, D.
Angew. Chem., Int. Ed. 2012, 51, 5048.
(5) Ni, C.; Zhu, L.; Hu, J. Huaxue Xuebao 2015, 73, 90.
(6) (a) Markovskij, L. N.; Pashinnik, V. E.; Kirsanov, A. V. Synthesis
1973, 1973, 787. (b) Middleton, W. J. J. Org. Chem. 1975, 40, 574.
D
Org. Lett. XXXX, XXX, XXX−XXX