Page 3 of 4
Green Chemistry
Please do not adjust margins
Journal Name
COMMUNICATION
(2:1, v/v, 6 mL). gD-incorporation was assessed by mass spectrometry. TBM
= 2-methylpropane-2-thiol.
efficient deuteration.
DOI: 10.1039/C9GC04096J
Furthermore, we tested a few substrates in EtOAc/D2O. The
reactions also worked well and excellent results were obtained
(Table 2, 1b (97%, 96%), 1d (94%, 98%), 1i (91%, 99%), 1m
(93%, 92%), 1t (93%, 94%), 1w (95%, 97%), 1D (85%, 98%)).
Thus, EtOAc/D2O could also be the solvent of choice.
Conflicts of interest
There are no conflicts to declare.
The rich functional group tolerances prompted us to try even
challenging substrates. We tested this strategy on glutathione
first (Table 2, substrate 1H). When water-soluble phosphoric
reagent such as TPPTS (Triphenylphosphine-3, 3', 3''-trisulfonic
acid trisodium salt) was employed instead of Ph2POEt, this
radical deuteration strategy worked smoothly in D2O and
provided the desired product with excellent result (> 95%
yield, 98% D-incorporation). When longer peptides such as 1I
and 1J were used, the reactions also worked well and different
functional groups in the peptides didn't affect the deuteration
efficiency at all ( > 95% yield, 97% - 99% D-incorporation, Table
2, substrate 1I, 1J).
Notes and references
1
2
S. E. Scheppele, Chem. Rev. 1972, 72, 511-532.
J. Helfenbein, C. Lartigue, E. Noirault, E. Azim, J.
Legailliard, M. J. Galmier, J. C. Madelmont, J. Med.
Chem. 2002, 45, 5806-5808.
3
4
5
6
L. S. Busenlehner, R. N. Armstrong, Arch. Biochem.
Biophys. 2005, 433, 34-46.
J. Atzrodt, V. Derdau, T. Fey, J. Zimmermann, Angew.
Chem. Int. Ed. 2007, 46, 7744-7765.
E. M. Simmons, J. F. Hartwig, Angew. Chem. 2012, 51,
3066-3072.
Y. Zhu, J. Zhou, B. Jiao, ACS Med. Chem. Lett. 2013, 4,
349-352.
We did the scale-up reaction for substrate 1d to further
demonstrate the feasibility of this protocol (Figure 1). The high
efficiency was maintained and the product was isolated in 87%
yield with 95% D-incorporation on 1.5 gram scale.
7
8
A. Katsnelson, Nat. Med. 2013, 19, 656.
C. S. Elmore, R. A. Bragg, Bioorg. Med. Chem. Lett. 2015,
25, 167-171.
9
A. Mullard, Nat. Rev. Drug Discov. 2016, 15, 219.
10 J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem.
Int. Ed. 2018, 57, 1758-1784.
11 C. Schmidt, Nat. Biotechnol. 2017, 35, 493.
12 For a review on the subject of metal-mediated/metal-
catalyzed reductive hydrodehalogenations, see: F.
Alonso, I. P. Beletskaya, M. Yus, Chem. Rev. 2002, 102,
4009.
hv
DTBP
Ph2POEt
H
H
O
N
O
N
SH
D
DCM/D2O(V:V = 2:1)
O
O
1d
2d
7.5 mmol, 1.5846 g
Fig 1. Scale-up reaction of 1d on gram scale
87% yield, 95% D-incorporation
13 A. Soulard, G. Villa, D. P. Vollmar, P. Renaud, J. Am.
Chem. Soc. 2018, 140, 155-158.
14 X. Wang, M. Zhu, D. P. Schuman, D. Zhong, W. Wang, L.
Wu, W. Liu, B. M. Stoltz, W. Liu, J. Am. Chem. Soc. 2018,
140, 10970-10974.
15 C. Liu, Z. Chen, C. Su, X. Zhao, Q. Gao, G. Ning, H. Zhu,
W. Tang, K. Leng, W. Fu, B. Tian, X. Peng, J. Li, Q. Xu, W.
Zhou, K. P. Loh, Nat. Commun. 2018, 9, 80.
16 D. A. Spiegel, K. B. Wiberg, L. N. Schacherer, M. R.
Medeiros, J. L. Wood, J. Am. Chem. Soc. 2005, 127,
12513-12515.
17 M. Zhang, X. A. Yuan, C. Zhu, J. Xie, Angew. Chem. Int.
Ed. 2019, 58, 312-316.
18 T. Junk, W. J. Catallo, Chem. Soc. Rev. 1997, 26, 401-
406.
19 R. P. Yu, D. Hesk, N. Rivera, I. Pelczer, P. J. Chirik,
Nature 2016, 529, 195.
20 L. V. Hale, N. K. Szymczak, J. Am. Chem. Soc. 2016, 138,
13489-13492.
21 Y. Y. Loh, K. Nagao, A. J. Hoover, D. Hesk, N. R. Rivera, S.
L. Colletti, I. W. Davies, D. W. C. MacMillan, Science,
2017, 358, 1182-1187.
22 J. L. Koniarczyk, D. Hesk, A. Overgard, I. W. Davies, A.
McNally, J. Am. Chem. Soc. 2018, 140, 1990-1993.
23 J. Atzrodt, V. Derdau, W. J. Kerr, M. Reid, Angew. Chem.
Int. Ed. 2018, 57, 3022-3047.
To gain insight into the mechanism of this reaction, we
performed radical-inhibition experiment by the addition of
2,2,6,6-tetramethyl-1-piperidyloxy
(TEMPO)
and
EPR
experiment using 5,5-dimethyl-1-pyrroline N-oxide (DMPO) as
an EPR spin trap to the model reaction (see the Supporting
Information for details). Both experiments suggested the
possibility of a radical process. Hence, we propose a plausible
mechanism described in Figure 2.
PPh2OEt
t-BuOO-t-Bu
PPh2OEt
complex
hv
t-BuO
t-BuOD
R
S PPh2OEt
D2
O
PPh2OEt
S
R
R
SH
R
S
R
SD
R
S
R
SD
R
R
D
SPPh2OEt
Fig 2. Plausible reaction mechanism of the desulfurization-deuteration reaction
Conclusions
24 H. M. Xia, F. L. Zhang, T. Ye, Y. F. Wang, Angew. Chem.
Int. Ed. 2018, 57, 11770-11775.
We have developed
a mild, general and metal-free
desulfurization-deuteration method induced by visible light
using D2O as the source of deuterium atoms. This radical
approach features green conditions, robustness, and excellent
functionality compatibility. It worked smoothly with primary,
secondary and tertiary thiols, thus providing a simple yet
25 M. H. G. Prechtl, M. Hölscher, Y. Ben-David, N.
Theyssen, R. Loschen, D. Milstein, W. Leitner, Angew.
Chem. Int. Ed. 2007, 46, 2269– 2272.
26 Y. Yu, B. Zhang, Angew. Chem. Int. Ed. 2018, 57, 5590–
5592.
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 3
Please do not adjust margins