T. Makihara et al. / Tetrahedron Letters 44 (2003) 865–868
867
1
3
selectivity.25 The present oxygenation of halocarbenes is
shown to be one of typical examples governed by the
spin-selection rule.26
Table 2. Estimated K and DGST values for 1 and 1
Carbene
Ka
DGST
DG
b
calcd,c
ST
1a
1b
1c
1d
1e
1f
1.2×10−3
1.7×10−3
2.0×10−2
5.3×10−2
B1×10−4
B1×10−4
−17
−16
−10
−7.5
B−23
B−23
−40; −15d
−28
−8.8
In conclusion, the apparent spin-forbidden oxygenation
of singlet halocarbenes (1) with 3O2 is shown to proceed
3
3
via the spin-allowed reaction between O2 and 1 equili-
−5.4
1
−40; −27d
−38d
brated with 1. Only by this mechanism are explicable
the substituent effects of p-NO2>Hꢀp-MeO and Br>
ClꢀF. This is the first successful study in determining
singlet–triplet energy gap of ‘singlet’ phenylhalo-
carbenes.
a Equilibrium constants (K) between 11 and 31 by assuming the kT
value (Scheme 2) as 1×109 M−1 s−1
.
b Singlet–triplet energy gap (kJ mol−1) from −RT ln K.
c Energy gap (kJ mol−1) by DFT of BLYP/6-311G*.
d DFT calculations of pBP/DN** (Spartan).
References
observed value by assuming the oxygenation rate of
kT=1×109 M−1 s−1 via pathway (b) of Scheme 2. The
free energy differences DGST between the S and T states
may be obtained from DGST=−RT ln K and the result-
ing values are listed in Table 2. It is clear that halocar-
benes suffering with more efficient oxygenation possess
a smaller negative DGST value, i.e. the smaller energy
1. (a) Matsuura, T. Oxygen Oxygenation Reaction;
Maruzen: Tokyo, 1977; (b) Singlet Oxygen; Wasserman,
H. H.; Murray, R. W., Eds.; Academic Press: New York,
1979; (c) Singlet O2; Frimer, A. A., Ed.; CRC Press: Boca
Raton, FL, 1985; Vols. 1–4.
2. (a) Kirmse, W.; Horner, H.; Hoffmann, H. Justus Liebigs
Ann. Chem. 1958, 614, 19; (b) Murray, R. W.; Suzui, A.
J. Am. Chem. Soc. 1971, 93, 4963; (c) Sawaki, Y.; Kato,
H.; Ogata, Y. J. Am. Chem. Soc. 1981, 103, 3832; (d)
Sander, W. Angew. Chem., Int. Ed. Engl. 1990, 29, 344;
(e) Bunnelle, W. H. Chem. Rev. 1991, 91, 335; (f) McCul-
lough, K. J.; Nojima, M. In Organic Peroxides; Ando,
W., Ed.; Wiley: New York, 1992; p. 661; (g) Ishiguro, K.;
Nojima, T.; Sawaki, Y. J. Phys. Org. Chem. 1997, 10,
787; (h) Ishiguro, K.; Sawaki, Y. Bull. Chem. Soc. Jpn.
2000, 73, 535.
3. (a) Sugawara, T.; Iwamura, H.; Hayashi, H.; Sekiguchi,
A.; Ando, W.; Liu, M. T. H. Chem. Lett. 1983, 1261; (b)
Casal, M. L.; Sugamori, S. E.; Scaiano, J. C. J. Am.
Chem. Soc. 1984, 106, 7623; (c) Casal, H. L.; Tanner, M.;
Werstiuk, N. H.; Scaiano, J. C. J. Am. Chem. Soc. 1985,
107, 4616; (d) Barcus, R. L.; Hadel, L. M.; Johnston, L.
J.; Platz, M. L.; Savino, T. G.; Scaiano, J. C. J. Am.
Chem. Soc. 1986, 108, 3928; (e) Fujiwara, Y.; Tanimoto,
Y.; Itoh, M.; Hirai, K.; Tomioka, H. J. Am. Chem. Soc.
1987, 109, 1942.
1
3
differences between 1 and 1.
calcdd
ST
In the last column of Table 2 are listed DG
values
calculated theoretically by the DFT method; mostly
with BLYP/6-311G*21 and partially with pBP/DN**22
calcd
ST
(Spartan). It is interesting to note that these DG
values are roughly in line with those of experimental
DGST ones. In other words, the theoretical prediction
reproduces well the observed substituent effect of p-
NO2C6H4>C6H5ꢀp-MeOC6H5 and of Br>ClꢀF for
the present oxygenation via the triplet sate. For the
simple cases of halocarbenes their singlet state has been
calculated to be stabilized in the order of FꢀCl>Br for
halogens.23 Similarly, theoretical calculations predicted
that for the case of aryl carbenes their triplet state is
stabilized by a p-nitro group and destabilized by a
p-methoxy substituent.24
Temperature effect on the oxygenation has been studied
for the case of carbene 1c. The kO values in Freon 113
2
were 1.01, 1.20. 1.23, 1.43, and 1.83×107 M−1 s−1 at
4. (a) Arduengo, A. J., III; Harlow, R. L.; Kline, M. J. Am.
Chem. Soc. 1991, 113, 361; (b) Arduengo, A. J., III Acc.
Chem. Res. 1999, 32, 913.
263.0, 273.0, 283.0, 293.0, and 303.0 K, respectively.
From the plot of ln kO versus 1/T were calculated
2
Ea=9.0 kJ mol−1 and A=6.13×108. The activation
energy of 9.0 kJ mol−1 is close to the DGST value of 10.0
kJ mol−1, supporting Mechanism (b) involving the equi-
5. Ishiguro, K.; Hirabayashi, K.; Nojima, T.; Sawaki, Y.
Chem. Lett. 2002, 796.
6. (a) Padwa, A.; Eastman, D. J. Org. Chem. 1964, 34, 2728;
(b) Turro, N. J.; Butcher, J. A., Jr.; Moss, R. A.; Guo,
W.; Munjal, R.; Fedorynski, M. J. Am. Chem. Soc. 1980,
102, 7576; (c) Griller, D.; Liu, M. T. H.; Scaiano, J. C. J.
Am. Chem. Soc. 1982, 104, 5594; (d) Moss, R. A.;
Lawrynowicz, W.; Turro, N. J.; Gould, I. R.; Cha, Y. J.
Am. Chem. Soc. 1986, 108, 7028.
1
3
librium between 1 and 1.
All of the results are explained reasonably by assuming
the spin-allowed oxygenation of triplet halocarbenes
with 3O2 (Mechanism (b)). The observed substituent
effects on phenyl and halogens are only understood by
the stabilizing or destabilizing effect of these groups.
For example, the p-NO2C6H4 group interacts strongly
with the p-orbital of carbene (cf. Scheme 2), resulting in
the stabilization, compared to phenyl one, of the T
state. In contrast, the fluoro group interacts with the
s-orbital, stabilizing the S state significantly. In the field
of carbene reactions, singlet–triplet energy gaps are an
important factor for controlling their reactivity and
7. Liu, M. T. H.; Bonneau, R.; Jefford, C. W. J. Chem.
Soc., Chem. Commun. 1990, 1482.
8. Graham, W. H. J. Am. Chem. Soc. 1965, 87, 4396.
9. Moss, R. A. In Carbenes; Jones, M., Jr.; Moss, R. A.,
Eds.; Wiley: New York, 1973; p. 153.
10. Moss, R. A.; Turro, N. J. In Kinetics and Spectroscopy of
Carbenes and Biradicals; Platz, M. S., Ed.; Plenum: New
York, 1990; p. 213.