10.1002/chem.202000753
Chemistry - A European Journal
COMMUNICATION
Chakraborty, Y. Ben-David, D. Milstein, J. Am. Chem. Soc. 2015, 137,
8888-8891; c) S. Chakraborty, G. Leitus, D. Milstein, Chem. Commun.
2016, 52, 1812-1815; d) C. Bornschein, S. Werkmeister, B. Wendt, H.
Jiao, E. Alnerico, W. Baumann, H. Junge, K. Junge, M. Beller, Nat.
Commun 2014, 5, 4111; e) S. Elangovan, C. Topf, S. Fischer, H. Jiao,
A. Spannenberg, W. Baumann, R. Ludwig, K. Junge, M. Beller, J. Am.
Chem. Soc. 2016, 138, 8809-8814; f) K. Tokmic, B. J. Jackson, A.
Salazar, T. J. Woods, A. R. Fout, J. Am. Chem. Soc. 2017, 139, 13554-
13561; g) R. Adam, C. B. Bheeter, J. R. Cabrero-Antonio, K. Junge, R.
Jackstell, M. Beller, ChemSusChem 2017, 10, 842-846.
diborylamines were shown to react with a diversity of aldehydes
to give the corresponding aldimines. The latter transformation
was found to be highly selective tolerating various common
functional groups, such as alkenes, alkynes, secondary amines,
esters, amides, carboxylic acids, pyridines, nitriles, nitro
compounds and even ketones. Combining the efficient
generation of N,N-diborylamines from nitriles with their reactivity
with aldehydes, for the first time we demonstrated selective and
synthetically valuable one-pot conversion of nitriles to aldimines.
General applicability of this method was demonstrated with a
diverse scope of substrates as well as with chemoselectivity
screening for the coupling of N,N-diborylamines with aldehydes.
We are currently further investigating the reactivity of N,N-
diborylamines as reagents for construction of other N-containing
organic molecules.
[8]
[9]
a) J. Li, M. Luo, X. Seng, H. Hua, W. Yao, S. A. Pullarkat, L. Xu, M. Ma,
Org. Chem. Front. 2018, 5, 3538-3547; b) A. Bismuti, M. J. Cowley, S.
P. Thomas, ACS Catal. 2018, 8, 2001-2005; c) Z. Huang, S. Wang, X.
Zhu, Q. Yuan, Y. Wei, S. Zhou, X. Mu, Inorg. Chem. 2018, 57, 15069-
15078; d) A. Harinath, J. Bhattacharjee, T. K. Panda, Adv. Synth. Catal.
2019, 361, 850-857; e) T. Kitano, T. Komuro, H. Tobita,
Organometallics 2019, 38, 1417-1420.
a) M. Ito, M. Itazaki, H. Nakazawa, Inorg. Chem. 2017, 56, 13709–
13714; b) A. D. Ibrahim, S. W. Entsminger, A. R. Fout, ACS Catal. 2017,
7, 3730–3734. c) H. Ben-Daat, C. L. Rock, M. Flores, T. L. Groy, A. C.
Bowman, R. J. Trovitch, Chem. Commun. 2017, 53, 7333-7336; d) G.
Nakamura, Y. Nakajima, K. Matsumoto, V. Srinivas, S. Shimada, S.
Catal. Sci. Technol. 2017, 7, 3196–3199.
Acknowledgements
This work was supported by Nazarbayev University via NU-
ORAU (Nr. 2016023) and FDCRG (Nr. 240919FD3911) grants
to AYK and SPG grant to DH.
[10] a) A. Y. Khalimon, P. Farha, L. G. Kuzmina, G. I. Nikonov, Chem.
Commun. 2012, 48, 455-457; b) A. Y. Khalimon, P. M. Farha, G. I.
Nikonov, Dalton Trans. 2015, 44, 18945-18956.
[11] Prior to this research this single reaction was the only example of
preparation of aldimines from N,N‐diborylamines under mild conditions.
The reaction of PhCH2N(BPin)2 with PhC(O)H was also reported but
required harsh conditions (KHMDS 5 mol%, 18 h, 150 °C): J. B. Geri, N.
K. Szymczak, J. Am. Chem. Soc., 2015, 137, 12808-12814.
Conflict of Interest
The authors declare no conflict of interest.
[12] M. Suginome, L. Uehlin, M. Murakami, J. Am. Chem. Soc. 2004, 126,
13196–13197.
Keywords: cobalt • hydroboration • nitriles • aminoboranes •
[13] G. P. Junor, E. A. Romero, X. Chen, R. Jazzar, G. Bertrand, Angew.
Chem. Int. Ed. 2019, 58, 2875-2878; Angew. Chem. 2019, 131, 2901-
2904.
imines
[1]
a) R. C. Larock, Comprehensive Organic Transformations: A Guide to
Functional Group Preparation, Wiley-VCH, New York,1989; b) S. A.
Lawrence, Amines: Synthesis, Properties and Applications, 1st Ed.,
Cambridge University Press, Cambridge, 2004; c) K. Eller, E. Henkes,
R. Rossbacher, H. Höke, Amines, Aliphatic. In Ullmann’s Encyclopedia
of Industrial Chemistry, Wiley-VCH, Weinheim, 2005; d) A. Ricci, Amino
Group Chemistry. From Synthesis to Life Sciences (Ed.: A. Ricci),
Wiley-VCH, Weinheim, 2008; e) M. Smith, Organic Synthesis, 4th Ed.,
Academic Press, London, 2017.
[14] A. Nurseiit, J. Janabel, K. A. Gudun, A. Kassymbek, M. Segizbaev, T.
M. Seilkhanov, A. Y. Khalimon, ChemCatChem 2019, 11, 790-798.
[15] A. Y. Khalimon, K. A. Gudun, D. Hayrapetyan, Catalysts 2019, 9, 490.
[16] For conversion of nitriles to aldimines via cross-hydrogenative coupling
of nitriles and amines, see references [6b-f].
[17] F. Yang, Q. Zhou, Y. Zhang, G. Zeng, G. Li, Z. Shi, B. Wang, S. Feng,
Chem. Commun. 2013, 49, 5289–5291.
[18] For examples of Co-catalyzed hydroboration reactions activated by
MBHEt3 (M = Na, Li), see: a) L. Zhang, Z. Zuo, X. Wan, Z.. Huang, J.
Am. Chem. Soc. 2014, 136, 15501-15504; b) L. Zhang, Z. Huang, J.
Am. Chem. Soc. 2015, 137, 15600-15603; c) S. W. Reilly, C. E.
Webster, T. K. Hollis, H. U. Valle, Dalton Trans. 2016, 45, 2823-2828.
[19] For examples of hydroboration reactions involving activation of
acetylacetonate cobalt pre-catalysts with HBPin, see: a) S. Yu, C. Wu,
S. Ge, J. Am. Chem. Soc. 2017, 139, 6526-6529; b) S. R. Tamang, D.
Bedi, S. Shafiei-Haghighi, C. R. Smith, C. Crawford, M. Findlater, Org.
Lett. 2018, 20, 6695-6700.
[2]
[3]
J. Seyden-Penne, Reductions by the Alumino- and Borohydrides in
Organic Synthesis, 2nd Ed., Wiley, New York, 1997.
a) L. A. Oro, D. Carmona, J. M. Fraile, Hydrogenation reactions. In
Metal-catalysis in Industrial Organic Processes, RSC Publishing,
Cambridge, 2006, pp. 79-113; b) J. G. d. Vries, The handbook of
homogeneous hydrogenation, Wiley-VCH, Weinheim, 2007.
M. Itazaki, H. Nakazawa, Molecules 2018, 23, 2769 and references
therein.
[4]
[5]
[6]
C. Ghosh, S. Kim, M. R. Mena, J.-H. Kim, R. Pal, C. L. Rock, T. L. Groy,
M.-H. Baik, R. J. Trovitch, J. Am. Chem. Soc. 2019, 141, 15327-15337.
a) S. Gomez, J. A. Peters, T. Maschmeyer, Adv. Synth. Catal. 2002,
344, 10-37-1057; b) D. Srimani, M. Feller, Y. Ben-David, D. Milstein,
Chem. Commun. 2012, 48, 11853-11855; c) J.-H. Choi, M. H. G.
Prechtl, ChemCatChem 2015, 7, 1023-1028; d) S. Chakraborty, D.
Milstein, ACS Catal. 2017, 7, 3968-3972; e) S. Chakraborty, G. Leitus,
D. Milstein, Angew. Chem. Int. Ed. 2017, 56, 2074-2078; Angew. Chem.
2017, 129, 2106-2110; f) H. Dai, H. Guan, ACS Catal. 2018, 8, 9125-
9130.
[20] The prices of anhydrous Co(acac)2 and Co(OAc)2 can be found under
[21] For NMR data for N,N-bis(pinacolboryl)amines, see: a) A. Kaithal, B.
Chatterjee, C. Gunanathan, J. Org. Chem. 2016, 81, 11153-11161; b)
C. Weetman, M. D. Anker, M. Arrowsmith, M. S. Hill, G. Kociok-Kohn, D.
J. Liptrot, M. F. Mahon, Chem. Sci. 2016, 7, 628-641; c) Y. Ding, X. Ma,
Y. Liu, W. Liu, Z. Yang, H. W. Roesky, Organometallics 2019, 38, 3092-
3097; d) W. Liu, Y. Ding, D. Jin, Q. Shen, B. Yan, X. Ma, Z. Yang,
Green Chem. 2019, 21, 3812-3815; e) S. Saha, M. S. Eisen, ACS Catal.
2019, 9, 5947-5956; and references [5], [8c-e] and [9a,c].
[7]
a) S. Lange, S. Elangovan, C. Cordes, A. Spannenberg, H. Jiao, H.
Junge, S. Bachmann, M. Scalone, C. Topf, K. Junge, M. Beller, Catal.
Sci. Technol. 2016, 6, 4768-4772; b) A. Mukherjee, D. Srimani, S.
[22] See the Supporting Information for details.
[23] Generally lower yields of aliphatic vs. aromatic aldimines can be
attributed to the well-known relative instability of aliphatic aldimines.
This article is protected by copyright. All rights reserved.