10.1002/ejoc.201900585
European Journal of Organic Chemistry
FULL PAPER
Chem. Commun. 2007, 489-491; h) J. A. Turpin, Y. S. Song, J. K. Inman,
M. J. Huang, A. Wallqvist, A. Maynard, D. G. Covell, W. G. Rice, E.
Appella, J. Med. Chem. 1999, 42, 67-86; i)N. Utsumi, S. Kitagaki, C. F.
Barbas, III, Org. Lett. 2008, 10, 3405-3408; j) Z.-J. Zheng, C. Jiang, P.-
C. Shao, W.-F. Liu, T.-T. Zhao, P.-F. Xu, H. Wei, Chem. Commun. 2019,
55, 1907-1910.
purified by flash chromatography on silica gel by gradient elution
with ethyl acetate in petroleum, affording the desired product 2 in
good yields.
General procedure for the methyl bromide captured
experiment: To a 35 mL sealed tube (with a Teflon cap) equipped
with a magnetic stir bar were sequentially added DBH (1.5mmol,
1.5equiv.), 1-butyl-piperidine (1mmol, 1equiv.), NaHCO3 (1mmol,
1equiv.), alkenes (1mmol, 1equiv.), (alkenes were added into a
sealed tube in the end, otherwise fail to react) and 4mL anhydrous
DMSO. The tube was capped and submerged into a preheated
40℃ oil bath. The reaction was stirred for 10 h and cooled down
to room temperature. Diethyl ether (20 mL) was added to the
resulting suspension. The resulting solid was collected by filtration.
The solid was solved in 2-propanol. The liquid was collected by
filtration and dried under a high vacuum. Then the raw product
was purified by recrystallization twice from 2-propanol by addition
of tetrahydrofuran to afford a white solid (product 7).
[2]
[3]
a) I. Degani, S. Dughera, R. Fochi, A. Gatti, Synthesis-Stuttgart 1996,
467-+; b) R. Maity, S. Naskar, I. Das, J. Org. Chem. 2018, 83, 2114-2124.
a) R. Sanichar, C. Carroll, R. Kimmis, B. Reiz, J. C. Vederas, Org. Biomol.
Chem. 2018, 16, 593-597; b) H. Tokuyama, S. Yokoshima, S. C. Lin, L.
P. Li, T. Fukuyama, Synthesis-Stuttgart 2002, 1121-1123; c) C.-L. Yi, Y.-
T. Huang, C.-F. Lee, Green Chem. 2013, 15, 2476-2484.
a) C.-T. Chen, S. Bettigeri, S.-S. Weng, V. D. Pawar, Y.-H. Lin, C.-Y. Liu,
W.-Z. Lee, J. Org. Chem. 2007, 72, 8175-8185; b) C. C. Fortes, C. R. O.
Souto, E. A. Okino, Synthetic Commun. 1991, 21, 2045-2052.
K. Mal, A. Sharma, P. R. Maulik, I. Das, Chem. - Eur. J. 2014, 20, 662-
667.
[4]
[5]
[6]
[7]
[8]
N. Mupparapu, M. Khushwaha, A. P. Gupta, P. P. Singh, Q. N. Ahmed,
J. Org. Chem. 2015, 80, 11588-11592.
B. Hu, P. Zhou, Q. Zhang, Y. Wang, S. Zhao, L. Lu, S. Yan, F. Yu, J. Org.
Chem. 2018, 83, 14978-14986.
a) Q. Gao, J. Zhang, X. Wu, S. Liu, A. Wu, Org. Lett. 2015, 17, 134-137;
b) S. Guo, Z. Dai, J. Hua, Z. Yang, Z. Fang, K. Guo, React. Chem. Eng.
2017, 2, 650-655; c) Y. Siddaraju, K. R. Prabhu, Org. Lett. 2016, 18,
6090-6093; d) X.-F. Wu, K. Natte, Adv. Synth. Catal. 2016, 358, 336-352;
e) S. A. Rather, A. Kumar, Q. N. Ahmed, Chem. Commun. 2019, 55,
4511-4514.
Acknowledgments
The research has been supported by the National Key Research
and Development Program of China (2016YFB0301501); the
National Natural Science Foundation of China (Grant No.
21776130 & 21878145); The Jiangsu Synergetic Innovation
Center for Advanced Bio-Manufacture (NO. X1821 & X1802);
Top-notch Academic Programs Project of Jangsu Higher
Education Institutions (TAPP); Postgraduate Research & Practice
Innovation Program of Jiangsu Province.
[9]
a) T. Mitchenko, P. Stender, N. Makarova, Solvent Extr. Ion Exch. 1998,
16, 75-149; b) N. Fan and W. Wang, HuaxueShijie, 1998, 39, 297. c) L.-
J. Xu, Y.-M. Lu and Z.-G. Cui, Chin. J. Spectrosc. Lab., 2008, 25, 1044.
d) B. R. Kim, J. E. Anderson, S. A. Mueller, W. A. Gaines and A. M.
Kendall, Water Res., 2002, 36, 4433.
[10] a) A. Alam, Synlett 2005, 2403-2404; b) S. Xu, P. Wu, W. Zhang, Org.
Biomol. Chem. 2016, 14, 11389-11395; c) Q. Yin, S.-L. You, Org. Lett.
2012, 14, 3526-3529.
[11] a) Y. Duan, W. Li, P. Xu, M. Zhang, Y. Cheng, C. Zhu, Org. Chem. Front.
2016, 3, 1443-1446; b) S. N. Gockel, T. L. Buchanan, K. L. Hull, J. Am.
Chem. Soc. 2018, 140, 58-61; c) Y.-Y. Liu, X.-H. Yang, R.-J. Song, S.
Luo, J.-H. Li, Nat. Commun. 2017, 8; d) X.-H. Ouyang, M. Hu, R.-J. Song,
J.-H. Li, Chem. Commun. 2018, 54, 12345-12348; e) C. Zhang, C. Tang,
N. Jiao, Chem. Soc. Rev. 2012, 41, 3464-3484; f) K. B. Urkalan, M. S.
Sigman, Angew. Chem., Int. Ed. 2009, 48, 3146-3149; g) F. Wang, D.
Wang, X. Mu, P. Chen, G. Liu, J. Am. Chem. Soc. 2014, 136, 10202-
10205.
Keywords: oxidative thioesterification • alkenes • α-
ketothioesters • metal-free
[1]
a) R. Maity, S. Naskar, K. Mal, S. Biswas, I. Das, Adv. Synth. Catal. 2017,
359, 4405-4410; b) K. Mal, I. Das, Adv. Synth. Catal. 2017, 359, 2692-
2698; c) K. Mal, S. Das, N. C. Maiti, R. Natarajan, I. Das, J. Org. Chem.
2015, 80, 2972-2988; d) K. Mal, S. Naskar, S. K. Sen, R. Natarajan, I.
Das, Adv. Synth. Catal. 2016, 358, 3212-3230; e) S. Naskar, S. R.
Chowdhury, S. Mondal, D. K. Maiti, S. Mishra, I. Das, Org. Lett. 2019, 21,
1578-1582; f) S. Y. Park, I.-S. Hwang, H.-J. Lee, C. E. Song, Nat.
Commun. 2017, 8, 14877; g) B. ter Horst, B. L. Feringa, A. J. Minnaard,
[12] a) S. Liu, H. Xi, J. Zhang, X. Wu, Q. Gao, A. Wu, Org. Biomol. Chem.
2015, 13, 8807-8811; b) P. K. Prasad, R. N. Reddi, A. Sudalai, Org. Lett.
2016, 18, 500-503; c) R. N. Reddi, P. K. Prasad, A. Sudalai, Angew.
Chem., Int. Ed. 2015, 54, 14150-14153; d) M. H. Shinde, U. A.
Kshirsagar, Org. Biomol. Chem. 2016, 14, 858-861.
This article is protected by copyright. All rights reserved.