M.A. Antunes et al. / Journal of Organometallic Chemistry 696 (2011) 2e6
5
(benzene-d6, 100.6 MHz, 298 K):
d
(ppm) 163.2 (i-2,6-MePhN), 133.0
3H total, 1H, eNH, 1H, [C3]NCH2, 1H, [C2]NCH2), 3.20 (m, 1H,
eCH2eCH]), 3.04e2.96 (overlapping, 2H total, 1H, eCH2eCH],
(i-PhCH2N), 131.8 (C-Ph), 129.3 (C-Ph), 128.6 (C-Ph), 128.4 (C-Ph),
125.9 (i-Ph), 112.7 (p-2,6-MePh), 56.6 (PhCH2N), 55.8 ([C3]CH2N),
52.3 ([C2]CH2N), 50.1 ([C3]CH2N), 49.9 ([C2]CH2N), 24.8
(CH2CH2CH2), 21.4 ((CH3)2Ph). EIMS (m/z): 587 (Mþ). Anal. Calcd.
for C32H43N5Zr: C 65.26, H 7.36, N 11.89. Found: C 62.73, H 7.28, N
10.34.
2
1H, [C2]NCH2), 2.86 (m, 1H, [C3]NCH2), 2.84 (d, 1H, JHH ¼ 13 Hz,
PhCH2N), 2.77e2.67 (overlapping, 3H total, 1H, [C2]NCH2, 1H, [C2]
NCH2, 1H, [C3]NCH2), 2.62e2.45 (overlapping, 2H total, 1H, [C2]
NCH2, 1H, [C3]NCH2), 2.36 (m, 1H, [C3]NCH2), 2.24 (m, 1H, [C3]
NCH2), 2.14e2.05 (overlapping, 3H total, 1H, [C2]NCH2, 1H, [C2]
NCH2, 1H, [C3]NCH2), 1.61e1.47 (overlapping, 1H, CH2CH2CH2, 1H,
3.1.4. (Bn2Cyclam)Zr(NHCH2CPh2CH2CH]CH2)2 (6)
CH2CH2CH2),1.10 (m,1H, CH2CH2CH2), 0.79 (m,1H, CH2CH2CH2). 13
C
At room temperature, addition of two equivalents of 1-amino-
{1H} NMR (C6D6, 75.5 MHz, 296 K):
d(ppm) 187.8 (C(1)-Ph), 149.9 (C
2,2-diphenyl-4-pentene to
a
C6D6 solution of
4
(20 mg,
(2)-Ph), 148.7 (i-Ph2C), 148.6 (i-Ph2C), 139.1 (C(6)-Ph), 135.9
(eCH]), 133.3 (i-PhCH2N), 132.7, 129.3, 129.3 (C(5)-Ph), 128.2,
128.1, 128.1, 127.9, 126.8, 125.8, 125.5, 124.4, 117.5 (]CH2), 62.7
(PhCH2), 59.3 ([C3]NCH2), 58.3 (eNHeCH2), 57.1 (PhCH2), 55.2 ([C2]
NCH2), 54.6 ([C3]NCH2), 54.3 ([C3]NCH2), 53.3 (Ph2C), 52.2 ([C2]
NCH2), 52.0 (CH2N), 50.6 (CH2N), 49.1 (CH2N), 42.1 (eCH2eCH]),
24.7 (CH2CH2CH2), 24.5 (CH2CH2CH2).
0.021 mmol) led to quantitative formation of the bis(amido)
zirconium complex 6 and toluene as shown by 1H and 13C NMR
spectra.
Complex 6 was also obtained by reaction of compounds 1 and 5
with two equivalents of 1-amino-2,2-diphenyl-4-pentene in the
same experimental conditions. Formation of HNMe2 was observed
in the reaction with 1 as confirmed by a doublet at 2.20 ppm in the
1H NMR spectrum and a resonance at 39.3 ppm in the 13C spectrum
that account for the methyl groups of the secondary amine.
3.2. General procedures for catalytic hydroamination
1H NMR (C6D6, 500.1 MHz, 296 K):
d(ppm) 7.44 (m, 4H, o-Ph2C),
All hydroamination reactions were carried out in an N2-filled
glove box on an NMR-tube scale. The NMR-tubes were equipped
with a Teflon screw cap. The aminoalkene, the standard (1,3,5-tri-
methoxybenzene) and the catalysts were dissolved in toluene-d8.
The reactions were heated in an oil bath to 115 ꢀC. The heterocyclic
products were characterized by 1H and 13C NMR spectroscopy and
compared with literature data.
7.21e7.13 (overlapping, 12H total, 4H, o-PhCH2N, 4H, m-PhCH2N,
4H, m-Ph2C), 7.09 (m, 2H, p-PhCH2N or p-Ph2C), 7.03 (m, 2H, p-
PhCH2N or p-Ph2C), 5.85 (m, 2H, eCH]), 5.24 (dd, 2H, ]CH2), 5.02
(dd, 2H, ]CH2), 4.54 (m, 4H, eNHeCH2), 3.94 (AB system, 4H,
PhCH2N), 3.63 (t, 2H, [C3]NCH2), 3.38 (t, 2H, eNH), 3.33 (m, 2H,
eCH2eCH]), 3.24 (m, 2H, [C2]NCH2), 3.12 (m, 2H, eCH2eCH]),
3.03e2.99 (overlapping, 4H total, 2H, [C3]NCH2, 2H, [C2]NCH2),
2.54e2.51 (overlapping, 4H total, 2H, [C2]NCH2, 2H, [C2]NCH2), 2.47
(m, 2H, [C3]NCH2), 2.19 (t, 2H, [C3]NCH2), 1.67 (m, 2H, CH2CH2CH2),
Acknowledgements
1.57 (m, 2H, CH2CH2CH2). 13C{1H} NMR (C6D6, 75.5 MHz, 296 K):
d
The authors would like to thank to Fundação para a Ciência e
a Tecnologia, Portugal, for funding (PTDC/QUI/66187/2006; SFRH/
BPD/26745/2006; SFRH/BD/29986/2006; SFRH/BD/44295/2008)
and to the Portuguese NMR Network (IST-UTL Centre) for providing
access to the NMR facility. We would also like to thank the Schafer
group members Ms. Philippa R. Payne and Dr. Patricia Horrillo
Martinez for providing the substrates and guidance on the catalytic
reactions.
(ppm) 149.0 (i-Ph2C), 148.9 (i-Ph2C), 136.7 (eCH]), 133.2 (i-
PhCH2N), 133.0 (p-PhCH2N or p-Ph2C), 129.7 (o-Ph2C), 129.5, 126.2
(o-PhCH2N, m-PhCH2N, m-Ph2C), 126.0 (p-PhCH2N or p-Ph2C), 117.5
(]CH2), 58.5 (PhCH2N and eNHeCH2), 56.8 ([C3]NCH2), 53.8
(Ph2C), 53.6 ([C2]NCH2 and [C2]NCH2), 51.9 ([C3]NCH2), 43.0
(eCH2eCH]), 25.5 (CH2CH2CH2).
Ph
4
5
Ph
References
3
6
2
NH
[1] J.J. Brunet, D. Neibeker, in: A. Togni, H. Gruetzmacher (Eds.), Catalytic Heter-
ofunctionalization, Wiley-VCH Verlag GmbH, 2001, pp. 91e141.
[2] (a) J.J. Brunet, D. Neibecker, F. Niedercorn, J. Mol. Catal. 49 (1989) 235e259;
(b) A.M. Johns, N. Sakai, A. Ridder, J.F. Hartwig, J. Am. Chem. Soc. 128(2006)
9306e9307.
1
Zr
N
N
N
N
[3] (a) T.E. Mueller, K.C. Hultzsch, M. Yus, F. Foubelo, M. Tada, Chem. Rev. 108
(2008) 3795e3892;
(b) J.F. Hartwig, Nature 455 (2008) 314e322;
(c) R. Severin, S. Doye, Chem. Soc. Rev. 36 (2007) 1407e1420;
(d) S.B. Amin, T.J. Marks, J. Am. Chem. Soc. 129 (2007) 10102e10103;
(e) K.C. Hultzsch, Adv. Synth. Catal. 347 (2005) 367e391;
(f) S. Hong, T.J. Marks, Acc. Chem. Res. 37 (2004) 673e686;
(g) F. Alonso, I.P. Beletskaya, M. Yus, Chem. Rev. 104 (2004) 3079e3159.
[4] (a) A.V. Lee, L.L. Schafer, Eur. J. Inorg. Chem. (2007) 2243e2255;
(b) A.L. Odom, Dalton Trans. (2005) 225e233;
3.1.5. ((C6H4CH2)BnCyclam)Zr(NHCH2CPh2CH2CH]CH2) (7)
At room temperature, addition of one equivalent of 1-amino-
2,2-diphenyl-4-pentene to
a
C6D6 solution of
5
(23 mg,
(c) S. Doye, Synlett (2004) 1653e1672;
0.049 mmol) resulted in the immediate formation of a yellow
solution. 1H and 13C NMR analysis revealed formation of the mono-
orthometalated complex 7 in a quantitative yield. Full assignment
of the aromatic resonances was not possible due to the complexity
(d) I. Bytschkov, S. Doye, Eur. J. Org. Chem. (2003) 935e946;
(e) E. Haak, I. Bytschkov, S. Doye, Angew. Chem., Int. Ed. 38 (1999)
3389e3391;
(f) P.L. McGrane, M. Jensen, T. Livinghouse, J. Am. Chem. Soc. 114 (1992)
5459e5460.
of the 1H and 13C spectra. 1H NMR (C6D6, 400.1 MHz, 296 K):
d(ppm)
[5] (a) P.D. Knight, I. Munslow, P.N. O’Shaughnessy, P. Scott, Chem. Commun.
(2004) 894e895;
8.29 (d, 1H, H(6)-Ph), 7.42 (t, 1H, H(5)-Ph), 7.34e6.95 (overlapping,
17H total, 1H, H(4)-Ph, 1H, H(3)-Ph, 2H, o-PhCH2N, 2H, m-PhCH2N,
1H, p-PhCH2N, 4H, o-Ph2C, 4H, m-Ph2C, 2H, p-Ph2C), 5.67 (m, 1H,
eCH]), 5.02 (dd, 1H, ]CH2), 4.88 (dd, 1H, ]CH2), 4.76 (d, 1H,
2JHH ¼ 13 Hz, PhCH2N), 4.31 (m, 2H, eNHeCH2), 4.10 (d, 1H,
2JHH ¼ 14 Hz, PhCH2N), 3.82 (t, 1H, [C3]NCH2), 3.60 (m, 1H, [C2]
(b) D.V. Gribkov, K.C. Hultzsch, Angew. Chem., Int. Ed. 43 (2004) 5542e5546.
[6] (a) S. Majumder, A.L. Odom, Organometallics 27 (2008) 1174e1178;
(b) C. Mueller, W. Saak, S. Doye, Eur. J. Org. Chem. (2008) 2731e2739;
(c) J.A. Bexrud, C. Li, L.L. Schafer, Organometallics 26 (2007) 6366e6372;
(d) K. Marcsekova, C. Loos, F. Rominger, S. Doye, Synlett (2007) 2564e2568;
(e) B.D. Stubbert, T.J. Marks, J. Am. Chem. Soc. 129 (2007) 6149e6167;
(f) M.C. Wood, D.C. Leitch, C.S. Yeung, J.A. Kozak, L.L. Schafer, Angew. Chem.,
Int. Ed. 46 (2007) 354e358;
2
NCH2), 3.52 (d, 1H, JHH ¼ 14 Hz, PhCH2N), 3.40e3.32 (overlapping,