The conversion of sugars into carbocycles is another area
that has attracted considerable attention,9 and the pharma-
cological promise of carbasugars10 has prompted the devel-
opment of several approaches to the synthesis of optically
pure carbasugars from sugars and other chiral sources.11 In
fact, particular attention has been paid to amino carbasugars
such as 17, a mannosidase inhibitor, and other inhibitors of
glycosidases,12 due to their potential for the treatment of
diseases involving carbohydrate metabolism or glycoprotein-
mediated processes13 (diabetes, cancer, viral infections, etc.).
Similar work on polyhydroxylated cycloalkyl amino acids
has been much less abundant: as far as we know, the
preparation of this kind of compounds from sugars has been
limited to the preparation of a polyhydroxylated cyclohexane
R-amino acid and two polyhydroxylated cyclopentane R-ami-
no acids,14 and neither total nor partial synthesis of similar
â-amino acids has been reported.
trated by the easy transformation of glucofuranose derivative
1 into a tripeptide containing a polyhydroxylated cyclopen-
tane â-amino acid via the corresponding lactone (Scheme
1).
Scheme 1. Synthesis of Peptides Containing Alicyclic
â-Amino Acids
This paper reports preliminary results on the synthesis of
polyhydroxylated alicyclic â-amino acids from sugars, ilus-
(4) For reviews on the synthesis of â-amino acids, see: (a) Cole, D. C.
Tetrahedron 1994, 50, 9517. (b) Fu¨lo¨p, F. Chem. ReV. 2001, 101, 2181.
(c) Park, K.-H.; Kurth, M. J. Tetrahedron 2002, 58, 8629. Recent articles
in this field include: (d) Martin Vila, M.; Minguillon, C.; Ortuno, R. M.
Tetrahedron: Asymmetry 1998, 9, 4291. (e) Gademann, K.; Jaun, B.;
Seebach, D.; Perozzo, R.; Scapozza, L.; Folkers, G. HelV. Chim. Acta 1999,
82, 1. (f) Abele, S.; Guichard, G.; Seebach, D. HelV. Chim. Acta 1998, 81,
2141. (g) Chung, Y. J.; Christianson, L. A.; Stanger, H. E.; Powell, D. R.;
Gellman, S. H. J. Am. Chem. Soc. 1998, 120, 10555. (h) Applequist, J.;
Bode, K. A.; Apella, D. H.; Christianson, L. A.; Gellman, S. H. J. Am.
Chem. Soc. 1998, 120, 4891. (i) Daura, X.; Gademann, K.; Jaun, B.;
Seebach, D.; vanGunsteren, W. F.; Mark, A. E. Angew. Chem., Int. Ed.
1999, 38, 236.
(5) Appella, D. H.; Christianson, L. A.; Karle, I. L.; Powell, D. R.;
Gellman, S. H. J. Am. Chem. Soc. 1999, 121, 6206.
(6) Appella, D. H.; LePlae, P. R.; Raguse, T. L.; Gellman, S. H. J. Org.
Chem. 2000, 65, 4766.
(7) Nicolaou, K. C.; Flo¨rke, H.; Egan, M. G.; Barth, T.; Estevez, V. A.
Tetrahedron Lett. 1995, 36, 1775.
(8) For a recent review on sugar amino acids, see: Gruner, S. A. W.;
Locardi, E.; Lohof, E.; Kessler, H. Chem. ReV. 2002, 102, 491.
(9) For reviews on the preparation of carbocycles from carbohydrates,
see: (a) Ferrier, R. J.; Middleton, S. Chem. ReV. 1993, 93, 2779. (b) Fraser-
Reid, B.; Tsang, R. In Strategies and Tactics in Organic Synthesis;
Academic Press: New York, 1989; Vol. 2, Chapter 4.
(10) Suami, T.; Ogawa, S. AdV. Carbohydr. Chem. Biochem. 1990, 48,
21.
Reaction of the easily prepared nitroglucofuranose deriva-
tive 115 with trifluroacetic acid and water, followed by
anomeric oxidation16 of the resulting hydroxy lactol 2 with
bromine and barium carbonate, afforded the lactone 3 as a
yellow oil (58% yield from 1). Reaction of 3 with triflic
anhydride in pyridine furnished the corresponding triflate 4,
which when treated with TBAF in THF readily underwent
intramolecular displacement of the triflate group by the
carbanion R to the nitro group, affording the bicyclic
(11) (a) Ogawa, S. In Studies in Natural Products Chemistry; Rahman,
A.-U.; Ed.; Elsevier Science: New York, 1993; Vol. 13, p 187. (b) Suami,
T. Pure Appl. Chem. 1987, 59, 1509. (c) Hudlicky, T.; Entwistle, D. A.;
Pitzer, K. K.; Thorpe, A. J. Chem. ReV. 1996, 96, 1195. (d) Arjona, O.;
Plumet, J. Recent Res. DeV. Org. Chem. 1999, 3, 265.
(12) For two recent reviews on inhibitors of glicosidases, see: (a) Asano,
N.; Nash, R. J.; Molyneux, R. J.; Fleet, G. W. J. Tetrahedron: Asymmetry
2000, 11, 1645. (b) Lillelund, V. H.; Jensen, H. H.; Liang, X.; Bols, M.
Chem. ReV. 2002, 102, 515. Recent selected articles in this field: (c) Uchida,
C.; Ogawa, S. Recent Res. DeV. Pure Appl. Chem. 1999, 3, 161. (d) Leroy,
E.; Reymond, J.-L. Org. Lett. 1999, 1, 775. (e) Boss, O.; Leroy, E.; Blaser,
A.; Reymond, J.-L. Org. Lett. 2000, 2, 151. (f) Kleban, M.; Hilgers, P.;
Greul, J. N.; Kugler, R. D.; Li, Jing; P., Sylviane; V., Pierre; Jager, V.
ChemBioChem 2001, 2, 365. (g) Greul, J. N.; Kleban, M.; Schneider, B.;
Picasso, S.; Jager, V. ChemBioChem 2001, 2, 368.
(13) Recent reviews: (a) Hughes, A. B.; Rudge, A. J. J. Nat. Prod. 1994,
57, 135. (b) Jacob, G. S. Curr. Opin. Struct. Biol. 1995, 5, 5. (c) Ganem,
B. Acc. Chem. Res. 1996, 29, 340. (d) Bols, M. Acc. Chem. Res. 1998, 31,
1. (e) Heighten, T. D.; Vasella, A. T. Angew. Chem., Int. Ed. Engl. 1999,
38, 750. (f) Sears, P.; Wong, C.-H. Angew. Chem., Int. Ed. Engl. 1999, 38,
2300. (g) Berecibar, A.; Grandjean, C.; Siriwardena, A. Chem. ReV. 1999,
99, 779.
(14) (a) Fairbanks, A. J.; Hui, A.; Skead, B. M.; de Q. Lilley, P. M.;
Lamont, B.; Storer, R.; Saunders: J.; Watkin, D. J.; Fleet, G. W. J.
Tetrahedron Lett. 1994, 35, 8891. (b) Hui, A.; Fairbanks, A. J.; Nash, R.
J.; de Q. Lilley, P. M.; Storer, R.; Watkin, D. J.; Fleet, G. W. J. Tetrahedron
Lett. 1994, 35, 8895.
â-nitrolactone 5, in 41% yield from 3 ([R]20 -35 (c 0.85
D
in chloroform)). Subsequent selective reduction of the nitro
group of 5 by catalytic hydrogenation with Raney nickel
yielded the desired amino derivative 6. As the lactone of a
polyhydroxylated cyclopentane â-amino acid, we aimed to
(15) Compound 1 was easily prepared by ozonolysis of the corresponding
azide, which was obtained from D-glucose, as per: Fleet, G. W. J.; Carpenter,
N. M.; Petursson, S.; Ramsden, N. G. Tetrahedron Lett. 1990, 31, 409-
412.
(16) Fleet, G. W. J.; Ramsden, N. G.; Witty, D. R. Tetrahedron 1989,
45, 327.
1424
Org. Lett., Vol. 5, No. 9, 2003