2670
A. Alberti et al. / Tetrahedron 68 (2012) 2662e2670
from Aldrich in the highest purity grade commercially available,
and were used as received. NO gas, 99%, was supplied by Matheson.
Supplementary data
All relevant EPR spectra and simulations along with a critical
discussion of the misassignments reported in Ref. 21 are available
as Supplementary data. Supplementary data related to this article
4.2. Apparatus
All EPR spectra were recorded on an upgraded X-band Bruker
ER200/ESP300 spectrometer equipped with a NMR gaussmeter for
field calibration and a frequency counter for the determination of g-
factors that were corrected with respect to that of perylene radical
cation in concentrated sulfuric acid (g¼2.00258).
References and notes
1. Darr, D.; Fridovich, I. J. Invest. Dermatol. 1994, 102, 671.
2. Zastrowa, L.; Groth, N.; Klein, F.; Kockott, D.; Lademann, J.; Renneberg, R.;
Ferrero, L. Skin Pharmacol. Physiol. 2009, 22, 31.
3. Cruz, M. T.; Neves, B. M.; Gonc¸ alo, M.; Figueiredo, A.; Duarte, C. B.; Lopes, M. C.
Immunopharmacol. Immunotoxicol. 2007, 29, 225.
4. Suschek, C. V.; Paunel, A.; Kolb-Bachofenin, V. Methods Enzymol. 2005, 396, 568.
5. Suschek, C. V. Nitric Oxide 2010, 22, 120.
A custom-made SuprasilÒ quartz flat flow cell (3ꢂ6ꢂ0.15 mm)
was used. The flow of the solution was ensured by a motor-driven
syringe and could be varied as appropriated. The cell was irradiated
with the light from a 250 W high pressure Hamamatsu Hg-lamp
focalized via an optical fiber light guide into the center of the
spectrometer cavity.
6. Weller, R. Clin. Exp. Dermatol. 2003, 28, 511.
7. Herrling, T.; Fuchs, M.; Rehberg, J.; Groth, N. Free Radical Biol. Med. 2003, 35, 59.
8. Takeshita, K.; Hamada, A.; Utsumi, H. Free Radical Biol. Med. 1999, 26, 951.
9. Finkelstein, E.; Rosen, G.; Rauckman, E. J. Biochim. Biophys. Acta 1984, 802, 90.
10. Takeshita, K.; Saito, K.; Ueda, J.; Anzai, T.; Ozawa, K. Biochim. Biophys. Acta 2002,
1573, 156.
The temperature was controlled through a standard variable
temperature set up and monitored with a Chromel-Alumel ther-
mocouple inserted inside the sample tube.
11. Krishna, M. C.; Grahame, D. A.; Samuni, A.; Mitchell, J. B.; Russo, A. Proc. Natl.
Acad. Sci. U.S.A. 1992, 89, 5537.
The EPR spectra were computer simulated using a self mini-
mizing software based on a Monte Carlo procedure.33
12. Aurich, H. G.; Czepluch, H. Tetrahedron 1980, 36, 3543.
13. Forde, N. R.; Butler, L. J.; Abrash, S. A. J. Chem. Phys. 1999, 110, 8954.
14. (a) Pedersoli, S.; Tormena, C. F.; Rittner, R. J. Mol. Struct. 2008, 875, 235; (b)
Martínez, A. G.; Vilar, E. T.; Fraile, A. G.; Martínez-Ruiz, P. J. Phys. Chem. A 2002,
106, 4942; (c) Troganis, A. N.; Sicilia, E.; Barbarossou, K.; Gerothanassis, I. P.;
Russo, N. J. Phys. Chem. A 2005, 109, 11878; (d) Phillips, W. D. J. Chem. Phys. 1955,
23, 1363.
4.3. Photolysis in the presence of MNP
Using a porous-bottom flask, acetonitrile (10 ml) was de-
oxygenated by bubbling pure N2 gas for circa 30 min, before adding
the alkyl amide (final concentration 2 M). After nitrogen-purging
the solution for 10 more minutes, MNP was added (10ꢃ3 M) and
the EPR experiment immediately run. It was carried out by pho-
tolyzing the solution continuously flowing through a flat cell placed
inside the EPR spectrometer cavity.
Additional experiments were also accomplished adding to the
final solution a substantial amount of the photoinitiator PILA 124
and filtering the incident UV radiation through a 400 nm long-pass
filter in order to avoid light absorption by the amides.
15. Booth, G. H.; Norrish, R. G. J. Chem. Soc. 1952, 188.
16. Nicholls, C. H.; Leermakers, P. A. J. Org. Chem. 1970, 35, 2754.
17. Mazzocchi, P. H.; Bowen, M. J. Org. Chem. 1976, 41, 1279.
18. Rustgi, S.; Riesz, P. Int. J. Radiat. Biol. 1978, 34, 149.
19. Rustgi, S.; Riesz, P. Int. J. Radiat. Biol. 1978, 34, 325.
20. Lipczynska-Kochany, E. Chem. Rev. 1991, 91, 477.
21. Wang, F.; Jin, J.; Wu, L. Magn. Reson. Chem. 2003, 41, 647.
22. (a) Ramsbotton, J. V.; Waters, W. O. J. Chem. Soc. B 1966, 132; (b) This identi-
fication was confirmed in the present work as quoted in Table 1.
23. (a) Florin, R. E. J. Chem. Phys. 1967, 47, 345; (b) Hudson, A.; Hussain, H. A. J.
Chem. Soc. B 1967, 1299; (c) Poupko, R.; Loewenstein, A.; Silve, B. L. J. Am. Chem.
Soc. 1971, 93, 580; (d) Kolodziejski, W.; Laszlo, P.; Stockis, A. Mol. Phys. 1982, 45,
939; (e) Gillon, B.; Becker, P.; Ellinger, Y. Mol. Phys. 1983, 48, 763; (f) Delley, B.;
Becker, P.; Gillon, B. J. Chem. Phys. 1984, 80, 4286.
24. The misassignment of this radical is further discussed in Supplementary data.
€
25. (a) Forrester, A. R. In; Fischer, H., Hellwege, K. eH., Eds. Landolt-Bornstein
4.4. Photolysis in the presence of NO
“Magnetic Properties of Free Radicals”; Springer: Berlin, 1979; Vol. 9/c1,
pp 770e790; (b) Forrester, A. R. In; Fischer, H., Hellwege, K. eH., Eds. Landolt-
€
Using a porous-bottom flask, acetonitrile (10 ml) was de-
oxygenated by bubbling N2 gas, for circa 30 min; the solvent was
then purged with NO for 20 more minutes, the resulting final NO
concentration being circa 10ꢃ3 M. To avoid pollution by adventi-
tious NOx, such as NO2, the NO stream was first passed through
a concentrated NaOH aqueous solution to trap the undesired spe-
cies. Finally, the amide was added (final concentration 2 M) a few
minutes before the end of the NO purging. The solution, continu-
ously flowing through the flat cell, was then photolysed inside the
cavity of the EPR spectrometer.
Bornstein “Magnetic Properties of Free Radicals”; Springer: Berlin, 1979; Vol. 9/
€
c1, pp 805e807; (c) Forrester, A. R. In; Fischer, H., Ed. Landolt-Bornstein
“Magnetic Properties of Free Radicals”; Springer: Berlin, 1989; Vol. 17/d2,
pp 392e394.
26. Maruthamuthu, P.; Scaiano, J. C. J. Phys. Chem. 1978, 82, 1588.
27. Campredon, M.; Samat, A.; Guglielmetti, R.; Alberti, A. Gazz. Chim. Ital. 1993,
123, 261.
28. Khan, N.; Wilmot, C. M.; Rosen, G. M.; Demidenko, E.; Sun, J.; Joseph, J.; O’Hara,
J.; Kalyanaraman, B.; Swartz, H. M. Free Radical Biol. Med. 2003, 34, 1473.
29. ten Grotenhuis, E.; Demel, R. A.; Ponec, M.; Boer, D. R.; van Miltenburg, J. C.;
Bouwstram, J. A. Biophys. J. 1996, 71, 1389.
30. Nizet, V.; Ohtake, T.; Lauth, X.; Trowbridge, J.; Rudisill, J.; Dorschner, R. A.;
Pestonjamasp, V.; Piraino, J.; Huttner, K.; Gallo, R. L. Nature 2001, 414, 454.
31. Damian, D. L. Photochem. Photobiol. Sci. 2010, 9, 578.
32. (a) Romero-Graillet, C.; Aberdam, E.; Biagoli, N.; Massabni, W.; Ortonne, J.-P.;
Ballotti, R. J. Biol. Chem. 1996, 271, 28052; (b) Lee, S. C.; Lee, J. W.; Jung, J. E.;
Lee, H. W.; Chun, S. D.; Kang, I. K.; Won, Y. H.; Kim, Y. P. J. Dermatol. 2000,
142, 653.
Acknowledgements
This work was financially supported by MIUR, Rome, Fund PRIN
2009.
33. Lucarini, M.; Luppi, B.; Pedulli, G. F.; Roberts, B. P. Chem.dEur. J. 1999, 5,
2048.