Nitroso Compounds
FULL PAPER
1213, 1192, 1106, 1093, 755, 691 cm–1. HRMS (ESI): calcd. for diene 3b (0.48 mmol). Rf = 0.5 (pentane/EtOAc, 5:1). 1H NMR
C11H13NNaO2 [M + Na]+ 214.0838; found 214.0832.
(400 MHz, CDCl3): δ = 1.32–1.40 (m, 1 H), 1.52–1.61 (m, 1 H),
2.17–2.33 (m, 8 H), 4.39–4.45 (m, 1 H), 4.66–4.71 (m, 1 H), 6.15–
6.20 (m, 1 H), 6.55–6.60 (m, 2 H), 6.61–6.65 (m, 2 H) ppm. 13C
NMR (100 MHz, CDCl3): δ = 21.4, 21.5, 24.0, 56.3, 69.0, 115.2,
+
3-(4-tert-Butylphenyl)-2-oxa-3-azabicyclo[2.2.2]oct-5-ene (4cb):
43.7 mg, yield = 45% generated from aniline 1c (0.4 mmol) and
diene 3b (0.48 mmol). Rf = 0.6 (pentane/EtOAc, 5:1). 1H NMR
(400 MHz, CDCl3): δ = 1.19 (s, 9 H), 1.30–1.40 (m, 2 H), 1.50–
1.61 (m, 2 H), 2.20–2.37 (m, 2 H), 4.35–4.42 (m, 1 H), 4.65–4.75
(m, 1 H), 6.15–6.20 (m, 1 H), 6.55–6.62 (m, 1 H), 6.93 (d, J =
8.6 Hz, 2 H), 7.22 (d, J = 8.6 Hz, 2 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 21.4, 23.9, 31.4, 34.0, 56.3, 68.9, 117.1, 125.1, 130.1,
123.8, 130.0, 131.5, 137.8, 152.4 ppm. IR (liquid, CH Cl ): ν =
˜
2
2
2969, 2926, 1596, 1467, 1453, 1250, 1065, 938, 912, 833, 708 cm–1.
HRMS (ESI): calcd. for C14H17NNaO+ [M + Na]+ 238.1202; found
238.1209.
Supporting Information (see footnote on the first page of this
article): General procedure and characterization of some known
oxazine compounds 4.
131.5, 144.6, 149.7 ppm. IR (KBr): ν = 2927, 2965, 1508, 1362,
˜
944, 835, 824 cm–1. HRMS (ESI): calcd. for C16H21NNaO+ [M +
Na]+ 266.1515; found 266.1510.
3-[4-(Trifluoromethoxy)phenyl]-2-oxa-3-azabicyclo[2.2.2]oct-5-ene
(4eb): 35.2 mg, yield Ͼ 65% generated from aniline 1e (0.2 mmol)
and diene 3b (0.24 mmol). Rf = 0.2 (pentane/EtOAc, 10:1). 1H
NMR (400 MHz, CDCl3): δ = 1.31–1.43 (m, 1 H), 1.52–1.64 (m, 1
H), 2.16–2.36 (m, 2 H), 4.36–4.41 (m, 1 H), 4.68–4.73 (m, 1 H),
6.11–6.16 (m, 1 H), 6.55–6.60 (m, 1 H), 6.96–7.00 (m, 2 H), 7.03–
Acknowledgments
This research was supported by the Swedish Research Council
(VR).
7.07 (m, 2 H) ppm. 13C NMR (100 MHz, CDCl3): δ = 21.2, 23.8, [1] A. Baeyer, Ber. Dtsch. Chem. Ges. 1874, 7, 1638–1640.
[2] Recent reviews: a) P. Merino, T. Tejero, Angew. Chem. Int. Ed.
2004, 43, 2995–2997; b) H. Yamamoto, N. Momiyama, Chem.
Commun. 2005, 3514–3525; c) G. Guillena, D. J. Ramon, Tetra-
hedron: Asymmetry 2006, 17, 1465–1492. and references cited
therein. For quite recent examples, see: ; d) M. R. Morales, N.
Momiyama, H. Yamamoto, Synlett 2006, 705–708; e) H.-M.
Guo, L. Cheng, L.-F. Cun, L.-Z. Gong, A.-Q. Mi, Y.-Z. Jiang,
Chem. Commun. 2006, 429–431; f) N. Momiyama, Y. Yamam-
oto, H. Yamamoto, J. Am. Chem. Soc. 2007, 129, 1190–1195;
g) Y.-J. Xu, Q.-Z. Liu, L. Dong, Synlett 2007, 273–277.
[3] For recent reviews on nitroso ene reactions, see: W. Adam, O.
Krebs, Chem. Rev. 2003, 103, 4131–4146.
[4] For recent reviews on nitroso Diels–Alder reactions (NDA),
see: Y. Yamamoto, H. Yamamoto, Eur. J. Org. Chem. 2006,
2031–2043; P. F. Vogt, M. J. Miller, Tetrahedron 1998, 54, 1317–
1348 and ref.[2b,12]. For earlier examples, see:; a) O. Wichterle,
Collect. Czech. Chem. Commun. 1947, 12, 292–304; b) Y. A.
Arbuzov, Dokl. Akad. Nauk SSSR 1948, 60, 993–996; c) H. G.
Viehe, R. Merenyi, E. Francotte, M. van Meerssche, G. Ger-
main, J. P. Declerq, J. Bodart-Gilmont, J. Am. Chem. Soc. 1977,
99, 2340–2342; d) K. F. McClure, S. J. Danishefsky, J. Org.
Chem. 1991, 56, 850–853; A. Defoin, J. Pires, J. Streith, Helv.
Chim. Acta 1991, 74, 1653–1670; e) E. R. Møller, K. A.
Jørgensen, J. Org. Chem. 1996, 61, 5770–5778; f) R. Skoda-
Földes, K. Vándor, L. Kollár, J. Horváth, Z. Tuba, J. Org.
Chem. 1999, 64, 5921–5925; g) A. P. Lightfoot, R. G. Pritchard,
H. Wan, J. E. Warren, A. Whiting, Chem. Commun. 2002,
2072–2073; h) K. R. Flower, A. P. Lightfoot, H. Wan, A. Whit-
ing, J. Chem. Soc. Perkin Trans. 1 2002, 2058–2064; i) G.
Calvet, M. Dussaussois, N. Lanchard, C. Kouklovsky, Org.
Lett. 2004, 6, 2449–2451; for recent enantioselective NDA reac-
tions, see: j) X. Ding, Y. Ukaji, S. Fujinami, K. Inomata, Chem.
Lett. 2003, 32, 582–583; k) C. P. Chow, K. J. Shea, J. Am.
Chem. Soc. 2005, 127, 3678–3679; l) Y. Yamamoto, H. Yama-
moto, J. Am. Chem. Soc. 2004, 126, 4128–4129.
56.6, 69.3, 118.3, 121.1, 129.7, 131.6, 143.8, 150.9 ppm; the signal
for OCF3 as a q is of low intensity to observe. 19F NMR (376 MHz,
CDCl ): δ = –58.2 (s) ppm. IR (KBr): ν = 2974, 2944, 1506, 1269,
˜
3
1215, 1151, 839 cm–1. HRMS (ESI): calcd. for C13H12F3NNaO2
+
[M + Na]+ 294.0712; found 294.0709.
3-o-Tolyl-2-oxa-3-azabicyclo[2.2.2]oct-5-ene (4jb): 53.6 mg, yield =
67 % generated from aniline 1j (0.4 mmol) and diene 3b
(0.48 mmol). Rf = 0.3 (pentane/EtOAc, 10:1). 1H NMR (400 MHz,
CDCl3): δ = 1.36–1.46 (m, 1 H), 1.48–1.58 (m, 1 H), 2.22–2.37 (m,
5 H), 3.97–4.02 (m, 1 H), 4.70–4.75 (m, 1 H), 6.02–6.08 (m, 1 H),
6.71–6.77 (m, 1 H), 6.92–6.98 (m, 1 H), 7.02–7.11 (m, 2 H) ppm.
13C NMR (100 MHz, CDCl3): δ = 17.9, 22.0, 23.8, 54.7, 69.2,
120.7, 123.6, 125.5, 128.6, 129.1, 130.3, 132.4, 149.5 ppm. IR (li-
quid, CH Cl ): ν = 2970, 2927, 1602, 1482, 1218, 940, 762 cm–1.
˜
2
2
HRMS (ESI): calcd. for C13H15NNaO+ [M + Na]+ 224.1046; found
224.1053.
3-(2-Bromophenyl)-2-oxa-3-azabicyclo[2.2.2]oct-5-ene (4kb):
68.3 mg, yield = 64% generated from aniline 1k (0.4 mmol) and
diene 3b (0.48 mmol). Rf = 0.6 (pentane/EtOAc, 10:1). 1H NMR
(400 MHz, CDCl3): δ = 1.34–1.44 (m, 1 H), 1.48–1.58 (m, 1 H),
2.22–2.32 (m, 1 H), 2.33–2.42 (m, 1 H), 4.52–4.57 (m, 1 H), 4.72–
4.77 (m, 1 H), 5.99–6.06 (m, 1 H), 6.68–6.76 (m, 1 H), 6.85–6.92
(m, 1 H), 7.09–7.18 (m, 2 H), 7.45 (dd, J1 = 7.9, J2 = 1.3 Hz, 1 H)
ppm. 13C NMR (100 MHz, CDCl3): δ = 21.6, 23.5, 54.8, 69.5,
114.5, 122.8, 125.0, 127.0, 128.9, 132.3, 132.8, 148.9 ppm. IR (li-
quid, CH Cl ): ν = 3056, 2965, 2933, 1581, 1460, 1370, 1028, 938,
˜
2
2
757 cm–1. HRMS (ESI): calcd. for C12H12BrNNaO+ [M + Na]+
287.9994; found 287.9980.
3-m-Tolyl-2-oxa-3-azabicyclo[2.2.2]oct-5-ene (4lb): 32.7 mg, yield =
41 % generated from aniline 1l (0.4 mmol) and diene 3b
1
(0.48 mmol). Rf = 0.5 (pentane/EtOAc, 5:1). H NMR (400 MHz,
[5] For selected examples, see F. Kopp, I. Sapountzis, P. Knochel,
Synlett 2003, 885–887.
CDCl3): δ = 1.32–1.42 (m, 1 H), 1.52–1.64 (m, 2 H), 2.20–2.40 (m,
5 H), 4.40–4.47 (m, 1 H), 4.67–4.74 (m, 1 H), 6.16 (t, J = 6.9 Hz,
1 H), 6.58 (t, J = 6.9 Hz, 1 H), 6.75 (d, J = 7.6 Hz, 1 H), 6.79–6.86
(m, 2 H), 7.09 (t, J = 7.8 Hz, 1 H) ppm. 13C NMR (100 MHz,
CDCl3): δ = 21.3, 21.6, 24.0, 56.4, 69.1, 114.5, 118.1, 122.8, 128.1,
[6] a) P. Gölitz, A. de Meijere, Angew. Chem. Int. Ed. Engl. 1977,
16, 854–855; b) R. Behrendt, M. Schenk, H.-J. Musiol, L. Mor-
oder, J. Pept. Sci. 1999, 5, 519–529; c) M. H. Davey, V. Y. Lee,
R. D. Miller, T. J. Marks, J. Org. Chem. 1999, 64, 4976–4979;
d) B. Priewisch, K. Rück-Braun, J. Org. Chem. 2005, 70, 2350–
2352.
[7] a) W. Seidenfaden, Houben–Weyl, Methoden der organischen
Chemie, 4th ed., vol. 10/1 (Ed.: E. Müller), Thieme, Stuttgart,
1971, p. 1053–1058. For perbenzoic acid, see: b) Y. Yost, H. R.
Gutmann, J. Chem. Soc. C 1970, 2497–2499; c) L. Di Nunno,
S. Florio, P. E. Todesco, J. Chem. Soc. C 1970, 1433–1434. For
129.9, 131.5, 138.1, 151.0 ppm. IR (liquid, CH Cl ): ν = 3056,
˜
2
2
2935, 2858, 1604, 1585, 1488, 1370, 1254, 944, 906, 781, 693 cm–1.
HRMS (ESI): calcd. for C13H15NNaO+ [M + Na]+ 224.1046; found
224.1037.
3-(3,5-Dimethylphenyl)-2-oxa-3-azabicyclo[2.2.2]oct-5-ene (4mb):
34.0 mg, yield = 40% generated from aniline 1m (0.4 mmol) and
Eur. J. Org. Chem. 2007, 4431–4436
© 2007 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
www.eurjoc.org
4435