Journal of the American Chemical Society
Page 6 of 6
15
A. 2010, 375, 49; (k) Gerber, R.; Frech, C. M. Chem. Eur. J. 2012, 18, 8901;
For a review of sulfur-based ligands in catalysis, see: Mellah, M.; Voi-
(l) Trostyanskaya, I. G.; Beletskaya, I. P.; Synlett, 2012, 23, 535.
turiez, A.; Schulz, E. Chem. Rev. 2007, 107, 5133.
1
2
3
4
5
6
7
8
16 (a) Rassias, G. A.; Page, P. C. B.; Reigner, S.; Christie, S. D. R. Synlett
2000, 379; (b) Page, P. C. B.; Heaney, H.; Reignier, S.; Rassias, G. A. Synlett
2003, 22; (c) Bernardi, L.; Bonini, B. F.; Comes-Franchini, M.; Fochi, M.;
Mazzanti, G.; Ricci, A.; Varchi, G. Eur. J. Org. Chem. 2002, 2776; (d) An-
derson, J. C.; James, D. S.; Mathias, J. P. Tetrahedron: Asymmetry 1998, 9,
753; (e) Adams, H.; Anderson, J. C.; Cubbon, R.; James, D. S.; Mathias, J. P.
J. Org. Chem. 1999, 64, 8256; (f) Allen, J. V.; Dawson, G. J.; Frost, C. G.;
Williams, J. M. J. Tetrahedron 1994, 50, 799; (g) Allen, J. V.; Coote, S. J.;
Dawson, G. J.; Frost, C. G.; Martin, C. J.; Williams, J. M. J. J. Chem. Soc.,
Perkin Trans. 1 1994, 2065.
7
For examples of transition-metal catalyzed hydrothiolation of allenes,
see: (a) Ogawa, A. Kawakami, J.-i.; Sonoda, N.; Hirao, T. J. Org. Chem.
1996, 61, 4161. (b) Kodama, S.; Nomota, A.; Kajitani, M.; Nishinaka, E.;
Sonoda, M.; Ogawa, A. J. Sulf. Chem. 2009, 30, 309. (c) Pritzius, A. B.; Breit,
B. Angew. Chem. Int. Ed. 2015, 54, 3121; (d) Pritzius, A. B.; Breit, B. Angew.
Chem. Int. Ed. 2015, 54, 15818.
8
For examples of Markovnikov-selective Brønsted or Lewis acid cata-
lyzed hydrothiolation of olefins, see: (a) Screttas, C. G.; Micha-Screttas, M.
J. Org. Chem. 1979, 44, 713; (b) Weïwer, M.; Coulombel, L.; Duñach, E.
Chem. Commun. 2006, 332.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
17 See SI for more information.
9
Tamai, T.; Fujiwara, K.; Higashimae, S.; Nomoto, A.; Ogawa, A. Org.
18
(a) Casey, C. P.; Whiteker, G. T. Isr. J. Chem. 1990, 30, 299. (b)
Lett. 2016, 2114.
10
Kranenburg, M.; Kamer, P. C. J.; van Leeuwen, P. W. N. M.; Vogt, D.; Keim,
W. J. Chem. Soc., Chem. Commun. 1995, 2177.; (c) van Leeuwen, P. W. N.
M.; Kamer, P. C. J.; Reek, J. N. H.; Dierkes, P. Chem. Rev. 2000, 100, 2741;
(d) Freixa, Z.; van Leeuwen, P. W. N. M. Dalton Trans. 2003, 1890.
19 The relative diastereoselectivity of 5c was determined by X-ray crystal-
lography, see supporting information for more details.
(a) Brouwer, C.; Rahaman, R.; He, C. Synlett 2007, 11, 1785; (b)
Cabrero-Antonino, J. R.; Leyva-Pérez, A.; Corma, A. Adv. Synth. Catal.
2012, 354, 678; (c) Tamai, T.; Ogawa, A. J. Org. Chem. 2014, 79, 5028.
11 Beller, M.; Seayad, J.; Tillack, A.; Jiao, H. Angew. Chem. Int. Ed. 2004
,
43, 3368.
12
(a) Ickes, A. R.; Ensign, S. C.; Gupta, A. K.; Hull, K. L. J. Am. Chem.
20 (a) Posner, T. Ber. Dtsch. Chem. Ges. 1905, 38, 646; (b) Griesbaum,
K. Angew. Chem., Int. Ed. Engl. 1970, 9, 273; (c) Wittrock, S.; Becker, T.;
Kunz, H. Angew. Chem., Int. Ed. 2007, 46, 5226; (d) Sletten, E. M.; Bertozzi,
C. R. Angew. Chem., Int. Ed. 2009, 48, 6974; (e) Hoyle, C. E.; Bowman, C.
N. Angew. Chem., Int. Ed. 2010, 49, 1540. (f) Tyson, E. L.; Ament, M. S.;
Yoon, T. P. J. Org. Chem. 2013, 78, 2046.
Soc. 2014, 136, 11256; (b) Gupta, A. K.; Hull, K. L. Synlett 2015, 26, 1779;
(c) Ensign, S. C.; Vanable, E. P.; Kortman, G. D.; Weir, L. J.; Hull, K. L. J.
Am. Chem. Soc. 2015, 137, 13748.
13 (a) Hoveyda, A. H.; Evans, D. A.; Fu, G. C. Chem Rev. 1993, 93, 1307-
1370. (b) Rousseau, G.; Breit, B. Angew. Chem. Int. Ed. 2011, 50, 2450-
2494.
21 Casey, C. P.; Whiteker, G. T.; Melville, M. G.; Petrovich, L. M; Gavney,
J. A. Jr.; Powell, D. R. J. Am. Chem. Soc. 1992, 114, 5535.
14 (a) For a review of sulfur containing pharmaceuticals, see: Vitaku, E.;
Ilardi, E. A.; Njardarson, J. T. J. Med. Chem. 2014, 57, 2832; for examples of
pharmaceutically relevant 1,2-aminothioethers, see: (b) Nakao, H.; Yanag-
isawa, H.; Shimizu, B.; Kaneko, M.; Nagano, M.; Sugawara, S.J. Antibiot.
1976, 29, 554; (c) Longer, M.; Shetty, B.; Zamansky, I.; Tyle, P. J. Pharm.
Sci. 1995, 84, 1090; (d) Lee, J.-S.; Paull, K.; Alverex, M.; Hose, C.; Monks,
A.; Grever, M.; Fojo, A. T.; Bates, S. E. Mol. Pharm. 1994, 46, 627.
22
The observed competition kinetic isotope effect of 5.7 may be en-
hanced due to rapid exchange between the proteo/deutero allyl amine and
thiophenol leading to Curtin-Hammett conditions; the S–D and N–D peaks
2
coalesce by H NMR at room temperature at 0.2 M (a 10-fold dilution of
reaction concentration).
H
SR3
Catalyst-Controlled,
R12N
R12N
Regiodivergent Hydrothiolation
SR3
H
R2
R2
R3S–H
+
23 examples
up to 88% yield
up to >20:1 dr
8 examples
up to 74% yield
[(P~P)RhCl]2
βn ≥ 99°
[(P~P)RhCl]2
βn ≤ 86°
R12N
R2
ACS Paragon Plus Environment