H. S. Kim et al. / Tetrahedron Letters 50 (2009) 1717–1719
1719
Table 2
References and notes
Pd-catalyzed dehydration of aldoximes.
1. For the Pd-assisted allylation of oximes, see: (a) Miyabe, H.; Yoshida, K.; Reddy,
V. K.; Matsumura, A.; Takemoto, Y. J. Org. Chem. 2005, 70, 5630–5635; (b)
Miyabe, H.; Matsumura, A.; Yoshida, K.; Yamauchi, M.; Takemoto, Y. Synlett
2004, 2123–2126.
2. For deprotection of allyl group, see: Yamada, T.; Goto, K.; Mitsuda, Y.; Tsuji, J.
Tetrahedron Lett. 1987, 28, 4557–4560.
Entry
1
Aldoximea
Conditions
A(3 h)
Nitrileb (%)
CH=NOH
.
2a (90)
O2N
O2N
5a
3. For Heck type cyclizations, see: (a) Ichikawa, J.; Nadano, R.; Ito, N. Chem.
Commun. 2006, 4425–4427; (b) Ohno, H.; Aso, A.; Kadoh, Y.; Fujii, N.; Tanaka, T.
Angew. Chem., Int. Ed. 2007, 46, 6325–6328; (c) Zhu, J.-L.; Chan, Y.-H. Synlett
2008, 1250–1254; For the Pd-catalyzed amino-Heck reactions of oxime
derivatives, see: (d) Narasaka, K. Pure Appl. Chem. 2003, 75, 19–28; (e)
Kitamura, M.; Zaman, S.; Narasaka, K. Synlett 2001, 974–976; (f) Kitamura, M.;
Narasaka, K. Chem. Rec. 2002, 2, 268–277. and further references cited therein.
4. For C–H activations, see: (a) Desai, L. V.; Hull, K. L.; Sanford, M. S. J. Am. Chem.
Soc. 2004, 126, 9542–9543; (b) Thu, H.-Y.; Yu, W.-Y.; Che, C.-M. J. Am. Chem. Soc.
2006, 128, 9048–9049; (c) Desai, L. V.; Malik, H. A.; Sanford, M. S. Org. Lett.
2006, 8, 1141–1144; (d) Thirunavukkarasu, V. S.; Parthasarathy, K.; Cheng, C.-
H. Angew. Chem., Int. Ed. 2008, 47, 9462–9466.
5. For the miscellaneous reactions of oximes, see: (a) Jiang, D.; Peng, J.; Chen, Y.
Org. Lett. 2008, 10, 1695–1698; (b) Nishimura, T.; Nishiguchi, Y.; Maeda, Y.;
Uemura, S. J. Org. Chem. 2004, 69, 5342–5347; (c) Grigg, R.; Markandu, J.
Tetrahedron Lett. 1991, 32, 279–282; (d) Suzuki, O.; Hashiguchi, Y.; Inoue, S.;
Sato, K. Chem. Lett. 1988, 291–294; (e) Miyabe, H.; Yamaoka, Y.; Naito, T.;
Takemoto, Y. J. Org. Chem. 2004, 69, 1415–1418.
CH=NOH
2
3
4
5
A(3 h)
A(2 h)
A(1 h)
B (1 h)c
2b (81)
2c (87)
2d (92)
2e (83)
5b
NO2
CH=NOH
5c
CH=NOH
O2N
Cl
Cl
Cl
5d
CH=NOH
Cl
5e
CH=NOH
6
B (8 h)d
B (80 h)d
B (8 h)d
A(7 h)
2f (88)
2g (90)
2h (88)
2i (87)
2j (87)
[6]. For ligand-mediated dehydration of aldoxime with nitrile complex trans-
[PtCl4(EtCN)2], see: Makarycheva-Mikhailova, A. V.; Bokach, N. A.; Haukka,
M.; Kukushkin, V. Y. Inorg. Chim. Acta 2003, 356, 382–386.
MeO
5f
CH=NOH
7. For examples, on the synthesis of nitriles from oximes, see: (a) Yang, S. H.;
Chang, S. Org. Lett. 2001, 3, 4209–4211; (b) Choi, E.; Lee, C.; Na, Y.; Chang, S. Org.
Lett. 2002, 4, 2369–2371; (c) Ishihara, K.; Furuya, Y.; Yamamoto, H. Angew.
Chem., Int. Ed. 2002, 41, 2983–2986; (d) Yan, P.; Batamack, P.; Prakash, G. K. S.;
Olah, G. A. Catal. Lett. 2005, 101, 141–143; (e) Yamaguchi, K.; Fujiwara, H.;
Ogasawara, Y.; Kotani, M.; Mizuno, N. Angew. Chem., Int. Ed. 2007, 46, 3922–
3925; (f) Attanasi, O.; Palma, P.; Serra-Zanetti, F. Synthesis 1983, 741–742; (g)
Maeyama, K.; Kobayashi, M.; Kato, H.; Yonezawa, N. Synth. Commun. 2002, 32,
2519–2525; (h) Konwar, D.; Boruah, R. C.; Sandhu, J. S. Tetrahedron Lett. 1990,
31, 1063–1064; (i) Hart-Davis, J.; Battioni, P.; Boucher, J.-L.; Mansuy, D. J. Am.
Chem. Soc. 1998, 120, 12524–12530; (j) Supsana, P.; Liaskopoulos, T.; Tsoungas,
P. G.; Varvounis, G. Synlett 2007, 2671–2674. and further references cited
therein.
7
5g
CH=NOH
8
Ph
N
5h
CH=NOH
9
5i
H
OH
B(12 h)c
N
10
8. For our recent contribution on Pd-mediated decarboxylative protonation and
allylation, see: Gowrisankar, S.; Kim, K. H.; Kim, S. H.; Kim, J. N. Tetrahedron Lett.
2008, 49, 6241–6244. and further references on Pd-mediated protonation and
allylation reactions were cited therein.
E-5j
H
9. For the Pd-mediated decarboxylative allylation and related reactions involving
nitro arene or pyridine moiety, see: (a) Waetzig, S. R.; Tunge, J. A. J. Am. Chem.
Soc. 2007, 129, 14860–14861; (b) Waetzig, S. R.; Tunge, J. A. J. Am. Chem. Soc.
2007, 129, 4138–4139.
10. Formation of cinnamyl compound 3 was very unusual. The result in CH3CN was
almost similar to that of the reaction in toluene. The phenyl moiety must be
derived from PPh3; however, detailed mechanism and scope of this novel
finding needs further study. For the use of tetraarylphosphonium halides as
arylating reagents in Pd-catalyzed Heck and cross-coupling reactions, see:
Hwang, L. K.; Na, Y.; Lee, J.; Do, Y.; Chang, S. Angew. Chem., Int. Ed. 2005, 44,
6166–6169.
N
OH
Z-5j
11
A(1 h)
A(3 h)
2j (83)
2k (91)
CH=NOH
12
5k
a
The configuration of oximes 5a–k is E-form (>95%) except Z-5j (entry 11).
Isolated yield.
Cs2CO3 (0.1 equiv) was used.
b
c
d
Cs2CO3 (0.5 equiv) was used.
11. Typical procedure for the conversion of p-nitrobenzaldoxime (5a) into p-
nitrobenzonitrile (2a):
A stirred mixture of p-nitrobenzaldoxime (83 mg,
0.5 mmol), Pd(OAc)2 (11 mg, 10 mol %), and PPh3 (26 mg, 20 mol %) in CH3CN
(1.5 mL) was heated to reflux for 3 h. The reaction mixture was filtered through
a Celite pad, washed with EtOAc, and the solvent was removed. After column
chromatographic purification process (hexanes/EtOAc, 8:1), analytically pure
p-nitrobenzonitrile was isolated, 67 mg (90%) as a white solid.
H
Ar
H
Ar
NH2
Me
N
"Pd"
??
N
+
12. For the reactions involving L–Pd–OH intermediate, see: (a) Hosokawa, T.;
Sugafuji, T.; Yamanaka, T.; Murahashi, S.-I. J. Organomet. Chem. 1994, 470, 253–
255; (b) Kim, S. H.; Lee, H. S.; Kim, S. H.; Kim, J. N. Tetrahedron Lett. 2008, 49,
5863–5866.
13. For the reversible dehydration of primary amides with PdCl2 in aqueous
acetonitrile, see: Maffioli, S. I.; Marzorati, E.; Marazzi, A. Org. Lett. 2005, 7,
5237–5239.
N
N
O
HO
Me
Me
OH
Scheme 3.
14. For the possibility of anti-b-hydride elimination, see: Schwarz, I.; Braun, M.
Chem. Eur. J. 1999, 5, 2300–2305. and further references cited therein.
15. The reaction of acetophenone oxime under the same reaction conditions
(CH3CN, 0.1 equiv of Cs2CO3, reflux, 36 h) showed no reaction.
16. During the evaluation process of this Letter, we carried out the reaction of
phenylacetaldehyde oxime (E/Z = 5:4 mixture), a typical aliphatic oxime, and
obtained benzyl cyanide in 56% under the same conditions given in Table 2
(conditions B with 0.5 equiv of Cs2CO3, 3 h).
Acknowledgments
This work was supported by the Korea Research Foundation
Grant funded by the Korean Government (MOEHRD, KRF-2008-
313-C00487). Spectroscopic data was obtained from the Korea Ba-
sic Science Institute, Gwangju branch.