Communication
ChemComm
44, 7674; (b) L. Wang, W. He and Z. Yu, Chem. Soc. Rev., 2013,
42, 599; (c) S. G. Modha, V. P. Mehta and E. V. Van der Eycken, Chem.
Soc. Rev., 2013, 42, 5042; (d) F. Pan and Z.-J. Shi, ACS Catal., 2014,
4, 280; (e) D. H. Ortgies, A. Hassanpour, F. Chen, S. Woo and
P. Forgione, Eur. J. Org. Chem., 2016, 408; ( f ) K. Gao, S. Otsuka,
A. Baralle, K. Nogi, H. Yorimitsu and A. Osuka, J. Synth. Org. Chem.,
Jpn., 2016, 74, 1119; (g) F. Takahashi, K. Nogi and H. Yorimitsu,
Phosphorus, Sulfur Silicon Relat. Elem., 2019, 194, 742Also see recent
reports: (h) F. Takahashi, K. Nogi and H. Yorimitsu, Org. Lett., 2018,
20, 6601; (i) Y. Yoshida, S. Otsuka, K. Nogi and H. Yorimitsu, Org.
Lett., 2018, 20, 1134; ( j) H. Minami, K. Nogi and H. Yorimitsu, Org.
Lett., 2019, 21, 2518.
Fig. 2 Proposed mechanism for desulfurization of 1a.
3 (a) Y. Unoh, K. Hirano, T. Satoh and M. Miura, Org. Lett., 2015, 17, 704;
(b) B. Wang, C. Lin, Y. Liu, Z. Fan, Z. Liu and Y. Zhang, Org. Chem. Front.,
2015, 2, 973; (c) M. Tobisu, Y. Masuya, K. Baba and N. Chatani, Chem.
Sci., 2016, 7, 2587; (d) C. W. Cavanagh, M. H. Aukland, Q. Laurent,
A. Hennessy and D. J. Procter, Org. Biomol. Chem., 2016, 14, 5286;
(e) M. Shigeno, Y. Nishii, T. Satoh and M. Miura, Asian J. Org. Chem.,
2018, 7, 1334; ( f ) C. N. Kona, Y. Nishii and M. Miura, Org. Lett., 2018,
20, 4898; (g) H. Shi and D. J. Dixon, Chem. Sci., 2019, 10, 3733;
(h) C. N. Kona, Y. Nishii and M. Miura, Angew. Chem., Int. Ed., 2019,
58, 9856; (i) S. Moon, Y. Nishii and M. Miura, Org. Lett., 2019, 21, 233.
4 For reviews on reductive desulfurization, see: (a) J. Rentner,
M. Kljajic, L. Offner and R. Breinbauer, Tetrahedron, 2014, 70, 8983;
(b) G. Zhao, L.-Z. Yuan, M. Alami and O. Provot, ChemistrySelect, 2017,
2, 10951.
On the basis of these experimental studies, a plausible
mechanism for the desulfurization reaction of dithiane 1a is
proposed (Fig. 2). The first step involves a two-electron transfer
from 3, leading to the C–S bond cleavage of 1a affording the
dianion species 12. Subsequent protonation of 1213 is followed
by the second C–S bond cleavage by an intramolecular attack of the
sulfur anion at another sulfur atom,14 leading to the formation of
the diphenyl methilide 14 which undergoes protonation to afford
the desired product 2a. The stability of the resulting anionic species
largely affects the second step of the reaction. Diphenyl methilide is
a stable anionic species, while phenylalkyl methilide is not very
stable, due to which the second step of C–S bond cleavage does not
proceed efficiently.
In summary, a novel SED (3)-mediated reductive desulfurization
of thioacetals and thioethers that obviates the need for the use
of transition-metals or alkali-metals is reported. The developed
reaction conditions display a broad substrate scope and include
methyl, methoxy, halo (fluoride, chloride, and bromide), cyano,
keto, and amide group substitutions on the aryl ring. Further
studies to expand the substrate scope and exploration of other
applications of the methodology to develop novel molecular trans-
formations under metal-free conditions are under investigation.
This work was financially supported by the Japan Society for
the Promotion of Science (JSPS) KAKENHI Grant no. 19H03346
and 19K16309. This work was also supported by Grand for Basic
Science Research Projects from The Sumitomo Foundation and
the Platform Project for Supporting Drug Discovery and Life
Science Research funded by Japan Agency for Medical Research
and Development (AMED).
˜´˜
5 G. Oksdath-Mansilla, J. E. Argu¨ello and A. B. Penenory, Tetrahedron
Lett., 2013, 54, 1515.
6 G. Zhao, L.-Z. Yuan, M. Alami and O. Provot, Adv. Synth. Catal., 2018,
360, 2522.
7 K. Saito, K. Kondo and T. Akiyama, Org. Lett., 2015, 17, 3366.
8 K. Nozawa-Kumada, E. Abe, S. Ito, M. Shigeno and Y. Kondo, Org.
Biomol. Chem., 2018, 16, 3095.
9 (a) J. R. Ames, M. A. Houghtaling, D. L. Terrian and T. P. Mitchell,
Can. J. Chem., 1997, 75, 28; (b) J. A. Murphy, T. A. Khan, S.-Z.
Zhou, D. W. Thomson and M. Mahesh, Angew. Chem., Int. Ed.,
2005, 44, 1356; (c) F. Schoenebeck, J. A. Murphy, S.-Z. Zhou,
Y. Uenoyama, Y. Miclo and T. Tuttle, J. Am. Chem. Soc., 2007,
129, 13368; (d) J. A. Murphy, J. Gamier, S. R. Park, F. Schoenebeck,
S.-Z. Zhou and A. T. Turner, Org. Lett., 2008, 10, 1227; (e) J. Garnier,
J. A. Murphy, S.-Z. Zhou and A. T. Turner, Synlett, 2008, 2127;
( f ) S. P. Y. Cutulic, J. A. Murphy, H. Farwaha, S.-Z. Zhou and
E. Chrystal, Synlett, 2008, 2132; (g) S. P. Y. Cutulic, N. J. Findlay,
S.-Z. Zhou, E. J. T. Chrystal and J. A. Murphy, J. Org. Chem., 2009,
74, 8713; (h) J. Garnier, D. W. Thomson, S. Zhou, P. I. Jolly,
L. E. A. Berlouis and J. A. Murphy, Beilstein J. Org. Chem., 2012,
8, 994; (i) P. I. Jolly, N. Fleary-Roberts, S. O’Sullivan, E. Doni, S. Zhou
and J. A. Murphy, Org. Biomol. Chem., 2012, 10, 5807; ( j) E. Cahard,
F. Schoenebeck, J. Garnier, S. P. Y. Cutulic, S. Zhou and J. A. Murphy,
Angew. Chem., Int. Ed., 2012, 51, 3673; (k) E. Doni and J. A. Murphy,
Chem. Commun., 2014, 50, 6073; (l) J. Broggi, T. Terme and P. Vanelle,
Angew. Chem., Int. Ed., 2014, 53, 384; (m) E. Doni and J. A. Murphy,
Org. Chem. Front., 2014, 1, 1072; (n) J. A. Murphy, J. Org. Chem., 2014,
79, 3731; (o) S. S. Hanson, E. Doni, K. T. Traboulsee, G. Coulthard,
J. A. Murphy and C. A. Dyker, Angew. Chem., Int. Ed., 2015, 54, 11236;
(p) M. Rueping, P. Nikolaienko, Y. Lebedev and A. Adams, Green
Chem., 2017, 19, 2571; (q) F. Cumine, F. Palumbo and J. A. Murphy,
Tetrahedron, 2018, 74, 5539; (r) S. Rohrbach, R. S. Shah, T. Tuttle and
J. A. Murphy, Angew. Chem., Int. Ed., 2019, 58, 11454.
Conflicts of interest
There are no conflicts to declare.
10 J. W. Kamplain, V. M. Lynch and C. W. Bielawski, Org. Lett., 2007,
9, 5401.
Notes and references
1 (a) E. J. Corey and D. Seebach, Angew. Chem., Int. Ed. Engl., 1965, 11 For details, see ESI†.
4, 1075; (b) D. Seebach and E. J. Corey, J. Org. Chem., 1975, 40, 231; 12 Reactions with ethyl(1-(naphthalen-2-yl)ethyl)sulfane and the sub-
¨
(c) B.-T. Grobel and D. Seebach, Synthesis, 1977, 357; (d) D. Seebach,
strates with alkyl or aryl thiol substituted alkane at other benzylic
position were unsuccessful under the conditions B or C. For details,
see ESI†.
´
Angew. Chem., Int. Ed. Engl., 1979, 18, 239; (e) M. Yus, C. Najera and
F. Foubelo, Tetrahedron, 2003, 59, 6147; ( f ) M. De Paolis,
H. Rosso, M. Henrot, C. Prandi, F. d’Herouville and J. Maddaluno, 13 Deuterium labelling experiment showed that 3 or its oxidized form
Chem. – Eur. J., 2010, 16, 11229. act as one of the proton sources. For details, see ESI†.
2 For reviews on transition-metal-catalyzed C–S bond activation, see: 14 W. Nakanishi, H. Nakanishi, Y. Yanagawa, Y. Ikeda and M. Oki,
(a) S. R. Dubbaka and P. Vogel, Angew. Chem., Int. Ed., 2005,
Chem. Lett., 1983, 105.
This journal is ©The Royal Society of Chemistry 2019
Chem. Commun., 2019, 55, 12968--12971 | 12971