Communication
ChemComm
Q. Tan, WO2009032249 A1, 2009; (c) T. T. Fujimoto, R. Ross and
S. H. Shaber, EP0889024 B1, 2000.
4 M. Regitz and G. Maas, Diazo Compounds: Properties and Synthesis,
Academic Press, New York, 1986, pp. 3–64.
5 (a) D. N. Tran, C. Battilocchio, S.-B. Lou, J. M. Hawkins and S. V. Ley,
Chem. Sci., 2015, 6, 1120–1125; (b) J.-S. Poh, D. N. Tran, C. Battilocchio,
J. M. Hawkins and S. V. Ley, Angew. Chem., Int. Ed., 2015, 54, 7920–7923;
(c) N. M. Roda, D. N. Tran, C. Battilocchio, R. Labes, R. J. Ingham,
J. M. Hawkins and S. V. Ley, Org. Biomol. Chem., 2015, 13, 2550–2554;
(d) C. Battilocchio, F. Feist, A. Hafner, M. Simon, D. N. Tran, D. M.
Allwood, D. C. Blakemore and S. V. Ley, Nat. Chem., 2016, 8, 360–367;
´
´
(e) E. Levesque, S. T. Laporte and A. B. Charette, Angew. Chem., Int. Ed.,
2017, 56, 837–841.
6 W. R. Bamford and T. S. Stevens, J. Chem. Soc., 1952, 4735–4740.
7 (a) V. K. Aggarwal, E. Alonso, G. Hynd, K. M. Lydon, M. J. Palmer,
M. Porcelloni and J. R. Studley, Angew. Chem., Int. Ed., 2001, 40,
1430–1433; (b) V. K. Aggarwal, E. Alonso, G. Fang, M. Ferrara,
G. Hynd and M. Porcellini, Angew. Chem., Int. Ed., 2001, 40, 1433–1436;
(c) V. K. Aggarwal, J. R. Fulton, C. G. Sheldon and J. de Vicente, J. Am.
Chem. Soc., 2003, 125, 6034–6035.
8 For selected examples, see: (a) A. R. Reddy, C.-Y. Zhou, Z. Guo, J. Wei
and C.-M. Che, Angew. Chem., Int. Ed., 2014, 53, 14175–14180;
(b) B. G. Das, A. Chirila, M. Tromp, J. N. H. Reek and B. de Bruin,
J. Am. Chem. Soc., 2016, 138, 8968–8975; (c) Y. Wang, X. Wen, X. Cui
and X. P. Zhang, J. Am. Chem. Soc., 2018, 140, 4792–4796.
Scheme 3 (a) Intramolecular example. 0.5 mmol scale. Diastereomeric
ratio determined by 1H NMR on the crude mixture. (b) Application of the
methodology developed. 0.5 mmol scale. Diastereomeric ratio deter-
mined by 1H NMR on the isolated mixture.
9 For a recent example, see: E.-H. Wang, Y.-J. Ping, Z.-R. Li, H. Qin,
Z.-J. Xu and C.-M. Che, Org. Lett., 2018, 20, 4641–4644.
10 (a) V. K. Aggarwal, J. de Vicente and R. V. Bonnert, Org. Lett., 2001, 3,
2785–2788; (b) L. A. Adams, V. K. Aggarwal, R. V. Bonnert, B. Bressel,
R. J. Cox, J. Shepherd, J. de Vicente, M. Walter, W. G. Whittingham
and C. L. Winn, J. Org. Chem., 2003, 68, 9433–9440; (c) J. L. Zhang,
P. W. H. Chan and C. M. Che, Tetrahedron Lett., 2003, 44, 8733–8737;
(d) A. Chirila, B. G. Das, N. D. Paul and B. de Bruin, ChemCatChem,
2017, 9, 1413–1421; (e) H. Jiang, W. Fu and H. Chen, Chem. – Eur. J.,
2012, 18, 11884–11888; ( f ) For the cobalt-catalyzed asymmetric
cyclopropanation with donor-type diazo generated in situ from
N-tosylhydrazones, see: Y. Wang, X. Wen, X. Cui, L. Wojtas and
X. P. Zhang, J. Am. Chem. Soc., 2017, 139, 1049–1052; (g) For
intermolecular metal-free cyclopropanation of alkenes using
N-tosylhydrazones, see: J. Barluenga, N. Quinones, M. Tomas-
Gamasa and M.-P. Cabal, Eur. J. Org. Chem., 2012, 2312–2317.
11 For selected reviews on the use of tosylhydrazone salts as diazo
surrogates, see: (a) J. R. Fulton, V. K. Aggarwal and J. de Vicente, Eur.
In summary, we developed a safe and easy-to-handle protocol
for the in situ generation of electronically diversified compounds
and their implication in an iron-catalyzed cyclopro-panation
reaction in the same pot. The use of nosylhydrazones allowed
us to broaden the scope accessible of diazo compounds by
avoiding side reactions, therefore permitting an efficient, safe
and modular synthesis of cyclopropanes bearing a multitude of
substituents with various electronics properties for the first time
in a one-pot methodology.
This work was supported through funding from the Natural
Science and Engineering Research Council of Canada (NSERC)
Discovery Grant RGPIN-06438, the Canada Foundation for
Innovation Leaders Opportunity Funds 227346, the Canada
Research Chair Program CRC-227346, the FRQNT Centre in Green
Chemistry and Catalysis (CGCC) Strategic Cluster RS-171310, and
´
J. Org. Chem., 2005, 1479–1492; (b) J. Barluenga and C. Valdes,
Angew. Chem., Int. Ed., 2011, 50, 7486–7500; (c) Z. Shao and
H. Zhang, Chem. Soc. Rev., 2012, 41, 560–572; (d) Q. Xiao,
Y. Zhang and J. Wang, Acc. Chem. Res., 2013, 46, 236–247;
(e) Y. Xia, Y. Zhang and J. Wang, ACS Catal., 2013, 3, 2586–2598.
12 For selected examples of in situ generation and cyclopropanation of
other types of diazo compounds, see: (a) R. P. Wurz and A. B. Charette,
Org. Lett., 2002, 4, 4531–4533; (b) B. Morandi and E. M. Carreira, Angew.
Chem., Int. Ed., 2010, 49, 938–941; (c) B. Morandi and E. M. Carreira,
Science, 2012, 335, 1471–1474; (d) K. J. Hock, R. Spitzner and
R. M. Koenigs, Green Chem., 2017, 19, 2118–2122.
´
´
´
Universite de Montreal. E. M. D. A. is grateful to Universite de
´
Montreal for postgraduate scholarship.
Conflicts of interest
13 For a short screening of other catalysts, see ESI†.
14 For a study on iron(II)-catalyzed cyclopropanation of phenyldiazo-
methane, see: C. G. Hamaker, G. A. Mirafzal and L. K. Woo,
Organometallics, 2001, 20, 5171–5176.
There are no conflicts to declare.
15 C. C. Dudman and C. B. Reese, Synthesis, 1982, 419–421.
16 (a) H. Tan, I. Houpis, R. Liu, Y. Wang and Z. Chen, Org. Process Res.
Dev., 2015, 19, 1044–1048; (b) T. Liu, J. Ma, D. Chao, P. Zhang,
Q. Liu, L. Shi, Z. Zhang and G. Zhang, Chem. Commun., 2015, 51,
12775–12778; (c) Z. Liu, Q. Li, P. Liao and X. Bi, Chem. – Eur. J., 2017,
23, 4756–4760; (d) Z. Liu, X. Zhang, G. Zanoni and X. Bi, Org. Lett.,
2017, 19, 6646–6649; (e) Z. Liu, Q. Li, Y. Yang and X. Bi, Chem.
Commun., 2017, 53, 2503–2506.
Notes and references
1 R. D. Taylor, M. MacCoss and A. D. G. Lawson, J. Med. Chem., 2014,
57, 5845–5859.
2 For a recent review, see: T. T. Talele, J. Med. Chem., 2016, 59,
8712–8756.
3 (a) J. A. Bender, P. Hewawasam, J. F. Kadow, O. D. Lopez, N. A.
Meanwell, V. N. Nguyen, J. L. Romine, L. B. Snyder, D. R. S. Laurent,
G. Wang, N. Xu and M. Belema, WO2010117635 A1, 2010; (b) A. R.
17 See ESI† for more details.
Bittner, C. J. Sinz, J. Chang, R. M. Kim, J. W. Mirc, E. R. Parmee and 18 Et3N was used to deactivate the silica.
This journal is ©The Royal Society of Chemistry 2018
Chem. Commun., 2018, 54, 13256--13259 | 13259