10.1002/anie.201916398
Angewandte Chemie International Edition
RESEARCH ARTICLE
Arias-Rotondo, J. K. McCusker, D. W. C. MacMillan. Science 2017, 355,
380-385.
catalyzed amination, etherification, and esterification of aryl
bromides can all be realized across a wide range of
substrates without light under conditions which otherwise bear
resemblance to the parent photochemical methodologies. To
this end, one may wish to re-evaluate the growing body of
literature that invokes energy transfer as the mechanism for
catalysis.[5c, 6d, 6f, 6g, 6ℓ, 14, 21] As we show here, only a small amount
of Ni(I) can initiate self-sustained Ni(I)/Ni(III) thermal catalysis.
We suspect that in many of the cycles ascribing catalysis to
energy transfer there may well be the production of small
amounts of Ni(I) through photoreduction.
Whereas various methodologies exist for the amination and
etherification of aryl bromides, our esterification protocol
described herein is especially notable given the scarcity of direct
Ni-catalyzed cross-coupling between carboxylic acids and aryl
bromides under light-free conditions. Critical to this dark
reactivity is the ability to selectively engage and sustain a Ni(I/III)
catalytic cycle while attenuating deactivation of the catalyst to
inactive Ni(II) complexes through bimetallic pathways. This may
be achieved through the slow formation of Ni(I) equivalents from
NiX2 precursors with substoichiometric amounts of an earth-
abundant heterogeneous reducing agent, thereby allowing us to
access photoredox-like cross-coupling reactivity with its intrinsic
advantages while obviating the need for continuous irradiation
using high-energy photons or precious metal photocatalysts.
[6] a) Y. Du, R. M. Pearson, C.-H. Lim, S. M. Sartor, M. D. Ryan, H. Yang,
N. H. Damrauer, G. M. Miyake. Chem. Eur. J. 2017, 23, 10962-10968; b)
R. J. Key, A. K. Vannucci. Organometallics 2018, 37, 1468-1472; c) Y.-Y.
Liu, D. Liang, L.-Q. Lu, W.-J. Xiao. Chem. Commun. 2019, 55, 4853-
4856; d) D.-L. Zhu, H.-X. Li, Z.-M. Xu, H.-Y. Li, D. J. Young, J.-P. Lang.
Organic Chemistry Frontiers 2019, 6, 2353-2359; e) M. S. Oderinde, N.
H. Jones, A. Juneau, M. Frenette, B. Aquila, S. Tentarelli, D. W. Robbins,
J. W. Johannes. Angew. Chem. Int. Ed. 2016, 55, 13219-13223; Angew.
Chem. 2016, 42, 13413-13417; f) X. Zhu, Y. Lin, J. San Martin, Y. Sun,
D. Zhu, Y. Yan. Nat. Commun. 2019, 10, 2843; g) B. Pieber, J. A. Malik,
C. Cavedon, S. Gisbertz, A. Savateev, D. Cruz, T. Heil, G. Zhang, P. H.
Seeberger. Angew. Chem. Int. Ed. 2019, 58, 9575-9580; Angew. Chem.
2019, 28, 9676-9681; h) L. Yang, Z. Huang, G. Li, W. Zhang, R. Cao, C.
Wang, J. Xiao, D. Xue. Angew. Chem. Int. Ed. 2018, 57, 1968-1972;
Angew. Chem. 2018, 7, 1986-1990; i) C. Cavedon, A. Madani, P. H.
Seeberger, B. Pieber. Org. Lett. 2019, 21, 5331-5334; j) C.-H. Lim, M.
Kudisch, B. Liu, G. M. Miyake. J. Am. Chem. Soc. 2018, 140, 7667-
7673; k) G. Lan, Y. Quan, M. Wang, G. T. Nash, E. You, Y. Song, S. S.
Veroneau, X. Jiang, W. Lin. J. Am. Chem. Soc. 2019; l) J. Lu, B.
Pattengale, Q. Liu, S. Yang, W. Shi, S. Li, J. Huang, J. Zhang. J. Am.
Chem. Soc. 2018, 140, 13719-13725; m) Y.-Y. Zhu, G. Lan, Y. Fan, S. S.
Veroneau, Y. Song, D. Micheroni, W. Lin. Angew. Chem. Int. Ed. 2018,
57, 14090-14094; Angew. Chem. 2018, 130, 14286-14290.
[7] a) F. G. Calvo-Flores. ChemSusChem 2009, 2, 905-919; b) S. Ruccolo,
Y. Qin, C. Schnedermann, D. G. Nocera. J. Am. Chem. Soc. 2018, 140,
14926-14937.
[8] a) B. Zhu, L.-K. Yan, Y. Geng, H. Ren, W. Guan, Z.-M. Su. Chem.
Commun. 2018, 54, 5968-5971; b) Z.-H. Qi, J. Ma. ACS Catal. 2018, 8,
1456-1463; c) H. Ren, G.-F. Li, B. Zhu, X.-D. Lv, L.-S. Yao, X.-L. Wang,
Z.-M. Su, W. Guan. ACS Catal. 2019, 9, 3858-3865.
[9] a) R. Sun, Y. Qin, S. Ruccolo, C. Schnedermann, C. Costentin, D. G.
Nocera. J. Am. Chem. Soc. 2019, 141, 89-93; b) Y. Kawamata, J. C.
Vantourout, D. P. Hickey, P. Bai, L. Chen, Q. Hou, W. Qiao, K. Barman,
M. A. Edwards, A. F. Garrido-Castro, J. N. deGruyter, H. Nakamura, K.
Knouse, C. Qin, K. J. Clay, D. Bao, C. Li, J. T. Starr, C. Garcia-Irizarry, N.
Sach, H. S. White, M. Neurock, S. D. Minteer, P. S. Baran. J. Am. Chem.
Soc. 2019, 141, 6392-6402.
[10] a) T. T. Tsou, J. K. Kochi. J. Am. Chem. Soc. 1979, 101, 7547-7560; b)
T. Inatomi, Y. Fukahori, Y. Yamada, R. Ishikawa, S. Kanegawa, Y. Koga,
K. Matsubara. Catal. Sci. Technol. 2019, 9, 1784-1793; c) G. D. Jones, J.
L. Martin, C. McFarland, O. R. Allen, R. E. Hall, A. D. Haley, R. J.
Brandon, T. Konovalova, P. J. Desrochers, P. Pulay, D. A. Vicic. J. Am.
Chem. Soc. 2006, 128, 13175-13183; d) J. B. Diccianni, T. Diao. Trends
in Chemistry.
Acknowledgements
This work was supported by the National Science Foundation
under grant CHE-1855531. We thank Drs. Qilei Zhu, Miguel
Gonzalez, and Adam Rieth for helpful discussions.
[11] Q. Lin, T. Diao. J. Am. Chem. Soc. 2019, 141, 17937-17948.
[12] a) X. Wang, G. Ma, Y. Peng, C. E. Pitsch, B. J. Moll, T. D. Ly, X. Wang,
H. Gong. J. Am. Chem. Soc. 2018, 140, 14490-14497; b) J. Sheng, H.-Q.
Ni, H.-R. Zhang, K.-F. Zhang, Y.-N. Wang, X.-S. Wang. Angew. Chem.
Int. Ed. 2018, 57, 7634-7639; Angew. Chem. 2018, 130, 7760-7765; c) S.
Biswas, D. J. Weix. J. Am. Chem. Soc. 2013, 135, 16192-16197; d) E.
Richmond, J. Moran. Synthesis 2018, 50, 499-513.
[13] V. K. Aggarwal, I. Emme, S. Y. Fulford. J. Org. Chem. 2003, 68, 692-700.
[14] T. Kim, S. J. McCarver, C. Lee, D. W. C. MacMillan. Angew. Chem. Int.
Ed. 2018, 57, 3488-3492; Angew. Chem. 2018, 130, 3546-3550.
[15] J. M. Dennis, N. A. White, R. Y. Liu, S. L. Buchwald. ACS Catal. 2019, 9,
3822-3830.
[16] H. Kitano, H. Ito, K. Itami. Org. Lett. 2018, 20, 2428-2432.
[17] J.-P. Cloutier, D. Zargarian. Organometallics 2018, 37, 1446-1455.
[18] a) B. J. Shields, B. Kudisch, G. D. Scholes, A. G. Doyle. J. Am. Chem.
Soc. 2018, 140, 3035-3039; b) T. T. Tsou, J. K. Kochi. J. Am. Chem.
Soc. 1979, 101, 6319-6332; c) D. J. Nelson, F. Maseras. Chem.
Commun. 2018, 54, 10646-10649; d) I. Funes-Ardoiz, D. J. Nelson, F.
Maseras. Chemistry – A European Journal 2017, 23, 16728-16733.
[19] E. Vitaku, D. T. Smith, J. T. Njardarson. J. Med. Chem. 2014, 57, 10257-
10274.
Keywords: cross-coupling • green chemistry • photoredox
catalysis • sustainable chemistry • transition metals
References
[1] a) P. Ruiz-Castillo, S. L. Buchwald. Chem. Rev. 2016, 116, 12564-
12649; b) J. F. Hartwig. Nature 2008, 455, 314-322; c) Y.-B. Huang, C.-T.
Yang, J. Yi, X.-J. Deng, Y. Fu, L. Liu. J. Org. Chem. 2011, 76, 800-810;
d) J. Xu, R. Y. Liu, C. S. Yeung, S. L. Buchwald. ACS Catal. 2019, 6461-
6466; e) J. D. Shields, E. E. Gray, A. G. Doyle. Org. Lett. 2015, 17,
2166-2169.
[2] a) Z. T. Ariki, Y. Maekawa, M. Nambo, C. M. Crudden. J. Am. Chem.
Soc. 2018, 140, 78-81; b) S. Z. Tasker, E. A. Standley, T. F. Jamison.
Nature 2014, 509, 299; c) A. S. Dudnik, G. C. Fu. J. Am. Chem. Soc.
2012, 134, 10693-10697; d) T. Igarashi, A. Haito, N. Chatani, M. Tobisu.
ACS Catal. 2018, 8, 7475-7483; e) T. E. Schirmer, A. Wimmer, F. W. C.
Weinzierl, B. König. Chem. Commun. 2019, 55, 10796-10799; f) B.
Sahoo, P. Bellotti, F. Juliá-Hernández, Q.-Y. Meng, S. Crespi, B. König,
R. Martin. Chemistry – A European Journal 2019, 25, 9001-9005.
[3] a) B. T. Ingoglia, C. C. Wagen, S. L. Buchwald. Tetrahedron 2019; b) P.
M. MacQueen, J. P. Tassone, C. Diaz, M. Stradiotto. J. Am. Chem. Soc.
2018, 140, 5023-5027; c) J. S. K. Clark, M. J. Ferguson, R. McDonald, M.
Stradiotto. Angew. Chem. Int. Ed. 2019, 58, 6391-6395; Angew. Chem.
2019, 131, 6457-6461; d) J. P. Tassone, E. V. England, P. M.
MacQueen, M. J. Ferguson, M. Stradiotto. Angew. Chem. Int. Ed. 2019,
58, 2485-2489; Angew. Chem. 2019, 131, 2507-2511.
[20] Y. Nakamura, K.-i. Maruya, T. Mizoroki. Bull. Chem. Soc. Jpn. 1980, 53,
3089-3092.
[21] C. M. Lavoie, R. McDonald, E. R. Johnson, M. Stradiotto. Adv. Synth.
Catal. 2017, 359, 2972-2980.
[4] J. Twilton, C. Le, P. Zhang, M. H. Shaw, R. W. Evans, D. W. C.
MacMillan. Nature Reviews Chemistry 2017, 1, 0052.
[5] a) E. B. Corcoran, M. T. Pirnot, S. Lin, S. D. Dreher, D. A. DiRocco, I. W.
Davies, S. L. Buchwald, D. W. C. MacMillan. Science 2016, 353, 279-
283; b) J. A. Terrett, J. D. Cuthbertson, V. W. Shurtleff, D. W. C.
MacMillan. Nature 2015, 524, 330-334; c) E. R. Welin, C. Le, D. M.
This article is protected by copyright. All rights reserved.