10.1002/adsc.202000326
Advanced Synthesis & Catalysis
are also thankful to the CIF and the Department of Chemistry,
IIT-Guwahati, for the instrumental facilities, infrastructural
support and startup grant. N. B. and R. S. thank the institute for
their fellowship
Angew. Chem. Int. Ed. 2018, 130, 6274-6278; e) S.
Elangovan, J. Neumann, J. B. Sortais, K. Junge, C.
Darcel, M. Beller, Nat. Commun. 2016, 7, 1-8; f) F.
Huang, Z. Liu, Z. Yu, Angew. Chem. Int. Ed. 2016, 55,
862-875; g) B. G. Berendt, K. Polidano, L. C. Morrill,
Org. Biomol. Chem. 2019, 17, 1595-1607; h) L. Alig,
M. Fritz, S. Schneider, Chem. Rev. 2019, 119, 2681-
2751; i) T. Irrgang, R. Kempe, Chem. Rev. 2019, 119,
2524-2549; j) A. Quintard, J. Rodriguez,
ChemSusChem 2016, 9, 28-30; k) A. J. A. Watson, J.
M. J. Williams, Science 2010, 329, 635-636; l) B. Paul,
M. Maji, K. Chakrabarti, S. Kundu, Org. Biomol. Chem.
2020, 18, 2193-2214.
References
[1] a) C. Trilok, G. Neha, K. Ashok, Int. J. ChemTech Res.
2010, 2, 762-773; b) A. A. E. Gendy, M. M. Said, N.
Ghareb, Y. M. Mostafa, E. Sayed, H. E. Ashry, Arch.
Pharm. 2008, 341, 294-300; c) S. N. Pandeya, P.
Yogeeswari, D. Sriram, G. Nath, Boll. Chim. Fram.
1998, 137, 321-324.
[10] K. Fujita, K. Yamamoto, R. Yamaguchi, Org. Lett.
2002, 4, 2691-2694.
[2] F. R. Chen, J. Huang, Chem. Rev. 2005, 105, 4671-
4706.
[11] S. Whitney, R. Grigg, A. Derrick, A. Keep, Org. Lett.
2007, 9, 3299-3302.
[3] K. Lalit, B. Shashi, J. Kamal, IJRPS 2012, 2, 23-33.
[4] I. Ninomiya, J. Nat. Prod. 1992, 55, 541-564.
[12] S. Imm, S. Bahn, A. Tillack, K. Mevius, L. Neubert,
[5] a) Y. Wanga, Z. Wana, C. Jiaa, X. Yao, Synth. Met.
2016, 211, 40-48; b) T. C. Barden, Top. Heterocycl
Chem. 2010, 26, 31-46.
M. Beller, Chem.- Eur. J. 2010, 16, 2705-2709.
[13] K. Barta, P. C. Ford, Acc. Chem. Res. 2014, 47, 1503-
1512.
[6] a) G. R. Humphrey, J. T. Kuethe, Chem. Rev. 2006,
106, 2875-2911; b) S. Cacchi, G. Fabrizi, Chem. Rev.
2005, 105, 2873-2920; c) K. Motokura, N. Nakagiri, T.
Mizugaki, K. Ebitani, K. Kaneda, J. Org. Chem. 2007,
72, 6006-6015; d) K. R. Campos, J. C. S. Woo, S. Lee,
R. D. Tillyer, Org. Lett. 2004, 6, 79-82.
[14] S. M. A. H. Siddiki, K. Kon, K. Shimizu, Chem.- Eur.
J. 2013, 19, 14416-14419.
[15] X. Jiang, W. Tang, D. Xue, J. Xiao, C. Wang, ACS
Catal. 2017, 7, 1831-1835.
[16] a) R. H. Crabtree, Chem. Rev. 2017, 117, 9228-9246;
b) F. Huang, Z. Liu, Z. Yu, Angew. Chem. Int. Ed.
2016, 55, 862-875; c) C. Gunanathan, D. Milstein,
Chem. Rev. 2014, 114, 12024-12087; d) Y. Obora, ACS
Catal. 2014, 4, 3972-3981; e) C. Gunanathan, Y. Ben-
David, D. Milstein, Science 2007, 317, 790-792; f) J. R.
Khusnutdinova, Y. Ben-David, D. Milstein, Angew.
Chem. Int. Ed. 2013, 52, 6269-6272; g) S. H. Kim, S. H.
Hong, Org. Lett. 2015, 18, 212-215; h) M. Nielsen, E.
Alberico, W. Baumann, H. -J. Drexler, H. Junge, S.
Gladiali, M. Beller, Nature 2013, 495, 85-89.
[7] a) Y. Qian, G. Ma, A. Lv, H. L. Zhu, J. Zhao, V. H.
Rawal, Chem. Commun. 2010, 46, 3004-3006; b) S. L.
You, Q. Cai, M. Zeng, Chem. Soc. Rev. 2009, 38, 2190-
2201; c) H. Matsuzawa, K. Kanao, Y. Miyake, Y.
Nishibayashi, Org. Lett. 2007, 26, 5561-5564; d) J. F.
Austin, D. W. C. MacMillan, J. Am. Chem. Soc. 2002,
124, 1172-1173.
[8] a) G. D. Gregorio, M. Mari, F. Bartoccini, G. Piersanti,
J. Org. Chem. 2017, 82, 8769-8775; b) S. Bartolucci,
M. Mari, G. D. Gregorio, G. Piersanti, Tetrahedron
2016, 72, 2233-2238; c) S. Bartolucci, M. Mari, A.
Bedini, G. Piersanti, G. Spadoni, J. Org. Chem. 2015,
80, 3217-3222; d) A. E. Putra, K. Takigawa, H. Tanaka,
Y. Ito, Y. Oe, T. Ohta, Eur. J. Org. Chem. 2013, 6344-
6354; e) R. Cano, M. Yus, D. J. Ramón, Tetrahedron
Lett. 2013, 54, 3394-339; f) B. Sundararaju, M. Achard,
B. Demerseman, L. Toupet, G. V. M. Sharma, C.
Bruneau, Angew. Chem. Int. Ed. 2010, 49, 2782-2785;
g) J. S. Yadav, B. V. S. Reddy, A. S. Reddy, J Mol
Catal A -Chem. 2008, 280, 219-223; h) S. Chen, G. Lu,
C. Cai, RSC Adv. 2015, 5, 70329-70332; i) S. M. A. H.
Siddiki, A. S. Touchy, M. A. R. Jamil, T. Toyao, K.
Shimizu, ACS Catal. 2018, 8, 3091-3103; j) Z. Liu, Z.
Yang, X. Yu, H. Zhang, B. Yu, Y. Zhao, Z. Liu, Org.
Lett. 2017, 19, 5228-5231; k) C. Seck, M. D. Mbaye, S.
Gaillard, J. L. Renaud, Adv. Synth. Catal. 2018, 360,
4640-4645;
[17] a) N. Biswas, K. Das, B. Sardar, D. Srimani, Dalton
Trans. 2019, 48, 6501-6512; b) K. Das, A. Mondal, D.
Srimani, Chem. Commun. 2018, 54, 10582-10585; c) K.
Das, A. Mondal, D. Pal, D. Srimani, Org. Lett. 2019,
21, 3223-3227; d) K. Das, A. Mondal, D. Pal, D.
Srimani, J. Org. Chem. 2018, 83, 9553-9560; e) K. Das,
A. Mondal, D. Pal, D. Srimani, Organometallics 2019,
38, 1815-1825.
[18] We observed that the acceptorless dehydrogenation
°
step become less favourable below 135 C. [17a] Thus, in
the C-3 alkylation reaction of indole, the first step,
which is the acceptorless dehydrogenation become less
facile leading to very poor yield of the desired product.
[19] We are not able to find out any interaction of cation
with our complex. The optimum basicity and solubility
might be an essential factor in this type of reaction. In
the case of CsOH.H2O, the water of crystallization
might be responsible for the reduced reactivity.
[9] a) M. H. S. A. Hamid, P. A. Slatford, J. M. J. Williams,
Adv. Synth. Catal. 2007, 349, 1555-1575; b) G. E.
Dobereiner, R. H. Crabtree, Chem. Rev. 2010, 110,
681-703; c) A. Corma, J. Navas, M. J. Sabater, Chem.
Rev. 2018, 118, 1410-1459; d) G. Choi, S. H. Hong,
[20] In toluene, the liberation of H2, might be more
favourable under this vigorous refluxing condition.
Thus, the hydrogenation of unsaturated imine
7
This article is protected by copyright. All rights reserved.