ACS Catalysis
Research Article
73% (0.012 g). Elemental analysis calculated (%): C 41.72, H
2.92; found (%): C 41.79, H 2.76.
ACKNOWLEDGMENTS
■
We are grateful to the Saint Petersburg State University
(postdoctoral fellowship No. 12.50.1560.2013) and Russian
Foundation for Basic Research (Grant Nos. 15-33-20536 and
14-03-01005). This work was supported by research centers
“Nanotechnology Interdisciplinary Centre”, “Molecular and
Cell Technologies Centre”, “Magnetic Resonance Research
Centre”, “Centre for X-ray Diffraction Studies”, “Chemical
Analysis and Materials Research Centre”, “Centre for Optical
and Laser Materials Research” of St. Petersburg State
University. Mechanistic studies performed at Zelinsky Institute
of Organic Chemistry, Moscow were supported by a grant from
the Russian Science Foundation (RSF Grant No. 14-50-00126).
Synthetic Procedure for [CuSPh]n-Catalyzed C−S
Cross-Coupling Reaction. [CuSPh]n (0.01 mmol, 1.7 mg
for 3a−3e, 3g−3j, 3m, and 0.05 mmol, 8.5 mg for 3f, 3k, 3l,
3n), Cs2CO3 (1.5 mmol, 0.4887 g), aryl iodide (1.1 mmol),
DMSO (1 mL) or dioxane (1 mL) and thiol (1 mmol for 3a−
3j, 3l, 1.2 mmol for 3k, 3m, 3n) were added to a vessel under
an inert atmosphere. The reaction vessel was equipped with a
magnetic stir bar and sealed with a PTFE-lined cap. The
mixture was stirred at 110 °C for 21 h. The heterogeneous
mixture was cooled to room temperature, diluted with water
(20 mL) and washed with EtOAc (3 × 10 mL). The combined
organic layers were washed with water (5 × 20 mL) to remove
DMSO and then dried over Na2SO4. The mixture was filtered,
and the solvent was evaporated under reduced pressure. The
residue was purified by column chromatography (hexane or
hexane/ether or hexane/ethyl acetate) to afford the corre-
REFERENCES
■
(1) Selected representative examples of catalytic C−S bond
transformations: (a) Kwong, F. Y.; Buchwald, S. L. Org. Lett. 2002,
4, 3517−3520. (b) Villalobos, J. M.; Srogl, J.; Liebeskind, L. S. J. Am.
Chem. Soc. 2007, 129, 15734−15735. (c) Zhang, Z.; Lindale, M. G.;
Liebeskind, L. S. J. Am. Chem. Soc. 2011, 133, 6403−6410.
(d) Vinogradova, E. V.; Zhang, C.; Spokoyny, A. M.; Pentelute, B.
L.; Buchwald, S. L. Nature 2015, 526, 687−691.
(2) (a) Allen, S. E.; Walvoord, R. R.; Padilla-Salinas, R.; Kozlowski,
M. C. Chem. Rev. 2013, 113, 6234−6458. (b) Wang, Z.; Wan, C.;
Wang, Y. Copper-Mediated Cross-Coupling Reactions, 1st Edition;
Evano, G., Blanchard, N., Eds.; John Wiley & Sons, Inc.: Hoboken,
NJ, 2013; p 745. (c) Liu, Y.; Wang, H.; Zhang, J.; Wan, J.-P.; Wen, C.
RSC Adv. 2014, 4, 19472−19475. (d) Liu, Y.; Wan, J.-P. Org. Biomol.
Chem. 2011, 9, 6873−6894. (e) Guo, Y.; Quan, Z.-J.; Da, Y.-X.; Zhang,
Z.; Wang, X.-C. RSC Adv. 2015, 5, 45479−45483. (f) Ley, S. V.;
Thomas, A. W. Angew. Chem., Int. Ed. 2003, 42, 5400−5449.
(3) (a) Larsson, P.-F.; Correa, A.; Carril, M.; Norrby, P.-O.; Bolm, C.
Angew. Chem., Int. Ed. 2009, 48, 5691−5693. (b) Zou, L.-H.;
Priebbenow, D. L.; Wang, L.; Mottweiler, J.; Bolm, C. Adv. Synth.
Catal. 2013, 355, 2558−2563. (c) Krebs, A.; Bolm, C. Tetrahedron
2011, 67, 4055−4060.
(4) (a) Bhong, B. Y.; Shelke, A. V.; Karade, N. N. Tetrahedron Lett.
2013, 54, 739−743. (b) She, J.; Jiang, Z.; Wang, Y. Tetrahedron Lett.
2009, 50, 593−596. (c) Su, K.; Qiu, Y.; Yao, Y.; Zhang, D.; Jiang, S.
Synlett 2012, 23, 2853−2857. (d) Bates, C. G.; Gujadhur, R. K.;
Venkataraman, D. Org. Lett. 2002, 4, 2803−2806. (e) Feng, Y.; Wang,
H.; Sun, F.; Li, Y.; Fu, X.; Jin, K. Tetrahedron 2009, 65, 9737−9741.
(f) Verma, A. K.; Singh, J.; Chaudhary, R. Tetrahedron Lett. 2007, 48,
7199−7202. (g) Jogdand, N. R.; Shingate, B. B.; Shingare, M. S.
Tetrahedron Lett. 2009, 50, 6092−6094. (h) Basu, B.; Mandal, B.; Das,
S.; Kundu, S. Tetrahedron Lett. 2009, 50, 5523−5528. (i) Xu, H.-J.;
Zhao, X.-Y.; Deng, J.; Fu, Y.; Feng, Y.-S. Tetrahedron Lett. 2009, 50,
434−437. (j) Kabir, M. S.; Lorenz, M.; Van Linn, M. L.; Namjoshi, O.
A.; Ara, S.; Cook, J. M. J. Org. Chem. 2010, 75, 3626−3643. (k) Bagley,
M. C.; Dix, M. C.; Fusillo, V. Tetrahedron Lett. 2009, 50, 3661−3664.
(l) Kao, H.-L.; Lee, C.-F. Org. Lett. 2011, 13, 5204−5207.
1
sponding product. All the products were characterized by H
NMR, 13C{1H} NMR, and high-resolution mass spectroscopy.
Efficient MS ionization of sulfides was obtained by the addition
of formic acid and AgNO3 to solutions of 3a−3e, 3g−3k, 3m,
3n and 3f, 3l, correspondently.
Cryo-SEM-EDS Measurements. Copper(I) oxide (0.01
mmol, 1.4 mg), Cs2CO3 (1.5 mmol, 0.4887 g), 4-iodotoluene
(1.1 mmol, 0.2398 g), DMSO (1 mL), and thiophenol (1
mmol, 0.102 mL) were added to a vessel under inert
atmosphere. The reaction vessel was equipped with a magnetic
stir bar and sealed with a PTFE-lined cap. The mixture was
stirred at 110 °C for 3 h and then allowed to cool to room
temperature. After 2 h of residue sedimentation, the resulting
solution was characterized by cryo-SEM and cryo-SEM-EDS.
Leaching Test Using Hot Centrifugation. Copper(I)
oxide (0.01 mmol, 1.4 mg), Cs2CO3 (1.5 mmol, 0.4887 g), 4-
iodotoluene (1.1 mmol, 0.2398 g), solvent (1 mL), and
thiophenol (1 mmol, 0.102 mL) were added to a test tube
under an inert atmosphere. The mixture was stirred at 110 °C
until the 4-iodotoluene conversion level reached 20% (for 2 h).
The test tube then was covered with heat-insulating material
and centrifuged until precipitate sedimentation (for 2 min).
The solution after centrifugation was transferred into new test
tube, fresh portion of Cs2CO3 (1 mmol, 0.3258 g) was added
and mixture was heated for 19 h at 110 °C. In addition, a
standard hot filtration test was performed and similar results
were obtained.
ASSOCIATED CONTENT
■
S
* Supporting Information
(5) (a) Dai, C.; Sun, X.; Tu, X.; Wu, L.; Zhan, D.; Zeng, Q. Chem.
Commun. 2012, 48, 5367−5369. (b) Sperotto, E.; van Klink, G. M. P.;
de Vries, J. G.; van Koten, G. J. Org. Chem. 2008, 73, 5625−5628.
(c) Shao, Y.-L.; Zhang, X.-H.; Han, J.-S.; Zhong, P. Phosphorus, Sulfur
Silicon Relat. Elem. 2013, 188, 1137−1146.
The Supporting Information is available free of charge on the
Details on Cryo-SEM measurements, XRD study, FE-
SEM data, ESI-MS data, NMR data, optimization of
reaction conditions, spectral parameters, and character-
ization of products (PDF)
(6) (a) Carril, M.; SanMartin, R.; Domínguez, E.; Tellitu, I. Chem.
Eur. J. 2007, 13, 5100−5105. (b) Ramana, T.; Saha, P.; Das, M.;
Punniyamurthy, T. Org. Lett. 2010, 12, 84−87. (c) Herrero, M. T.;
SanMartin, R.; Domínguez, E. Tetrahedron 2009, 65, 1500−1503.
(d) Zhang, X.-Y.; Zhang, X.-Y.; Guo, S.-R. J. Sulfur Chem. 2011, 32,
23−35. (e) Feng, Y.; Zhao, X.; Wang, J.; Zheng, F.; Xu, H. Chin. J.
Chem. 2009, 27, 2423−2425. (f) Schwab, R. S.; Singh, D.; Alberto, E.
E.; Piquini, P.; Rodrigues, O. E. D.; Braga, A. L. Catal. Sci. Technol.
2011, 1, 569−573.
AUTHOR INFORMATION
■
Corresponding Author
Notes
(7) (a) Beletskaya, I. P.; Ananikov, V. P. Chem. Rev. 2011, 111,
1596−1636. (b) Ananikov, V. P.; Orlov, N. V.; Zalesskiy, S. S.;
The authors declare no competing financial interest.
3642
ACS Catal. 2016, 6, 3637−3643