Accordingly, known olefin alcohol 1a9 was coupled with
acid 2a10 to give ester 3a in good yield.11 Takai methylena-
tion12 of ester 3a to acyclic enol ether 4a was followed by
exposure of crude 4a to 20 mol % of the second generation
Grubbs catalyst 713 in hot toluene to give an intermediate
glycal 5a that was not isolated but regioselectively hydrobo-
rated14 with an excess of BH3‚THF. Oxidative quench (H2O2,
NaOH) of the intermediate borane then afforded the target
â-C-glycoside 6a in 55% yield15 over three steps, Scheme
2. The stereochemistry of hydroboration was verified by
This three-step protocol efficiently provided the target
C-glycoside 6a, a carbon mimic of an O-phenyl glycoside,16
in good overall yield.
To explore the use of different protecting groups on the
olefin alcohol fragment, compound 1b was targeted for
synthesis. Deacetylation of tri-O-acetyl-D-glucal (8) was
followed by p-methoxybenzylation to deliver 9. Oxidative
cleavage of the olefin17 then gave aldehydo-formate ester
10 that was isolable but instable and, therefore, directly
converted to lactol 11 by exposure to basic methanol. Wittig
reaction of the lactol with an excess of Ph3PdCH2 then
provided olefin alcohol 1b, Scheme 3.
Scheme 2. Synthesis of a Benzylic â-C-Glycoside
Scheme 3. Synthesis of Olefin Alcohol 1b
A variety of diverse C-glycoconjugates (6a-i) were then
prepared as outlined in Table 1. The esterifications (1 + 2
f 3), mediated by DCC and 4-DMAP, proceeded in
excellent yield, and application of the three-step protocol to
the formed esters 3a-i served to deliver the target â-C-
glycosides 6a-i, respectively, in 49-60% overall yield for
the three steps. Entry 2 represents a C-glycoside that carries
a very lipophilic group at the anomeric center.
Entries 3 and 4 are stable mimics of sterol glycosides,
while compounds 6e and 6f are C-glycoside analogues of
O-linked amino acid glycosides based on serine and ty-
rosine.18
acetylation of 6a and examination of proton NMR data (J1,2
) J2,3 ) 8.9 Hz).
(4) (a) Wei, A.; Boy, K. M.; Kishi, Y. J. Am. Chem. Soc. 1995, 117,
9432-9436. (b) Wang, J.; Ko´vac, P.; Sinay¨, P.; Glaudemans, C. P. J.
Carbohydr. Res. 1998, 308, 191-193. (c) Tsuruta, O.; Yuasa, H.; Kurono,
S.; Hashimoto, H. Bioorg. Med. Chem. Lett. 1999, 9, 807-810. (d) Yang,
G.; Franck, R. W.; Bittman, R.; Samadder, P.; Arthur, G. Org. Lett. 2001,
3, 197-200. (e) Cheng, X. H.; Khan, N.; Mootoo, D. R. J. Org. Chem.
2000, 65, 2544-2547.
(5) For a comprehensive review on the synthesis of C-saccharides, see:
Liu, L.; McKee, M.; Postema, M. H. D. Curr. Org. Chem. 2001, 5, 1133-
1167.
In these latter two examples, the Boc group on the nitrogen
was found to be compatible with the methylenation chemistry
(6) For reviews on olefin metathesis chemistry, see: (a) Trnka, T. M.;
Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18-29. (b) Fu¨rstner, A. Angew.
Chem., Int. Ed. 2000, 39, 3012-3043. (c) Wright, D. L. Curr. Org. Chem.
1999, 3, 211-240. (d) Grubbs, R. H.; Chang, S. Tetrahedron 1998, 54,
4413-4450. (e) Ivin, K. J. J. Mol. Catal. A.: Chem. 1998, 133, 1-16. (f)
Randall, M. L.; Snapper, M. L. J. Mol. Catal. A: Chem. 1998, 133, 29-
40. (g) Armstrong, S. K. J. Chem. Soc., Perkin Trans. 1 1998, 371-388.
(h) Schuster, M.; Blechert, S. Angew. Chem., Int. Ed. Engl. 1997, 36, 2036-
2056. (i) Fu¨rstner, A. Top. Catal. 1997, 4, 285-299. (j) Grubbs, R. H.;
Miller, S. J.; Fu, G. C. Acc. Chem. Res. 1995, 28, 446-452. (k) Schmalz,
H.-G. Angew. Chem., Int. Ed. 1995, 34, 1833-1836.
(7) (a) Postema, M. H. D.; Calimente, D. J. Org. Chem. 1999, 64, 1770-
1771. (b) Postema, M. H. D.; Calimente, D.; Liu, L.; Behrmann, T. L. J.
Org. Chem. 2000, 65, 6061-6068. (c) Liu, L.; Postema, M. H. D. J. Am.
Chem. Soc. 2001, 123, 8602-8603. (d) Postema, M. H. D.; Piper, J. L.;
Liu, L.; Shen, J.; Faust M.; Andreana, P. R. J. Org. Chem. 2003, in press.
(8) For a review on the use of olefin metathesis in carbohydrate chemistry,
see: Jo¨rgensen, M.; Hadwiger, P.; Madsen, R.; Stutz, A. E.; Wrodnigg, T.
M. Curr. Org. Chem. 2000, 4, 565-588.
(12) Takai, K.; Kakiuchi, T.; Kataoka, Y.; Utimoto, K. J. Org. Chem.
1994, 59, 2668-2670.
(13) Scholl, M.; Ding, S.; Lee, C. W.; Grubbs, R. H. Org. Lett. 1999, 1,
953-956.
(14) (a) Hanessian, S.; Martin, M.; Desai, R. C. J. Chem. Soc., Chem.
Commun. 1986, 926-927. (b) Schmidt, R. R.; Preuss, R.; Betz, R.
Tetrahedron Lett. 1987, 28, 6591-6594.
(15) Yields refer to chromatographically and spectroscopically homo-
geneous materials.
(16) There are a large number of natural products that contain this type
of linkage, e.g., vancomycin.
(17) Darrow, J. W.; Drueckhammer, D. G. J. Org. Chem. 1994, 59,
2976-2985.
(18) For a review on carbon-linked amino acids, see: Dondoni, A.; Marra,
A. Chem ReV. 2000, 100, 4395-4422.
(19) Nagatsu, A.; Watanabe, M.; Ikemoto, K.; Hashimoto, M.; Murakami,
N.; Sakakibara, J.; Tokuda, H.; Nishino, H.; Iwashima, A.; Yazawa, K.
Bioorg. Med. Chem. Lett. 1994, 4, 1619-1622.
(9) Maryanoff, B. E.; Nortey, S. O.; Inners, R. R.; Campbell, S. A.; Reitz,
A. B. Liotta, D. Carbohydr. Res. 1987, 171, 259-278.
(10) See Supporting Information.
(11) All new compounds were fully characterized by extensive one- and
two-dimensional NMR techniques, IR and high-resolution mass spectrom-
etry, and optical rotation.
(20) See, for example: (a) Cipolla, L.; Nicotra, F.; Vismara, E.; Guerrini,
M. Tetrahedron 1997, 53, 6163-6170. (b) Gujar, M. K.; Reddy, R.
Carbohydr. Lett. 1997, 2, 293-298. (c) Dodoni, A.; Perrone, D.; Turturici,
E. J. Org. Chem. 1999, 64, 5557-5564. (d) Yang, G.; Franck, R. W.; Byun,
H.-S.; Bittman, R.; Samadder, P.; Arthur, G. Org. Lett. 1999, 1, 2149-
2151.
1722
Org. Lett., Vol. 5, No. 10, 2003