Journal of the American Chemical Society
Page 4 of 5
(8) For reports of intramolecular coordination between carbonyl
isomerization of the corresponding boron enolates, and the
synthetic applications of these Cꢀboron enolates have been
demonstrated in subsequent C‒O and C‒C bond forming reactions.
Further applications of these species in organic synthesis are
anticipated. We envisage that this unusual OꢀtoꢀC isomerization
could occur in other reaction contexts (e.g. conjugate borylation)
where similar Oꢀboron enolates have been implicated as
intermediates.
oxgyen and a βꢀBPin group, see: (a) Lee, J. C. H.; McDonald, R.; Hall, D.
G. Nat. Chem. 2011, 3, 894; (b) Ohmura, T.; Awano, T.; Suginome, M. J.
Am. Chem. Soc. 2010, 132, 13191.
1
2
3
4
5
6
7
8
(9) For examples of the analogous OꢀtoꢀC isomerization of silyl
enolates, see: (a) Kim, Y.; Chang, S. Angew. Chem. Int. Ed. 2016, 55, 218;
(b) Heydari, A.; Alijanianzadeh, R. Chem. Lett. 2003, 32, 226.
(10) Marder has reported that the ligand on the Pt catalyst has some
effect on the selectivity between Oꢀ vs Cꢀboron enolate formation (see ref
7b). However, a followꢀup computational study by the same group
considered an uncatalyzed 1,3ꢀboryl shift as the isomerization mechanism
(see ref 6b), which did not account for the ligand effect. Despite the
insights from these works, controlled formation of either isomer from the
same substrate with high selectivity remained to be demonstrated.
(11) Copper hydride can be preꢀformed, or generated in situ from
copper(II) acetate and pinacolborane: Lee, D.ꢀW.; Yun, J. Tetrahedron
Lett. 2005, 46, 2037.
ASSOCIATED CONTENT
Supporting Information
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
The Supporting Information is available free of charge on the
ACS Publications website.
Experimental procedures and spectra (PDF)
Crystallographic data of 3c (CIF)
(12) For reviews of copper hydride catalyzed reactions, see: (a)
Deutsch, C.; Krause, N.; Lipshutz, B. H. Chem. Rev. 2008, 108, 2916; (b)
Daeuble, J. F.; Stryker, J. M.; Chiu, P.; Ng, W. H. In Hexa-ꢀ-hydro-
AUTHOR INFORMATION
hexakis(triphenylphosphine)hexacopper, Encyclopedia of Reagents for
Organic Synthesis; John Wiley & Sons, Ltd: New York, 2001.
(13) CCDC 1553753 contains the crystallographic data for compound
3c. These data can be obtained free of charge from The Cambridge
(14) Larson, G. L.; Cruz de Maldonado, V.; Fuentes, L. M.; Torres, L.
E. J. Org. Chem. 1988, 53, 633.
Corresponding Author
Author Contributions
‡ Author responsible for Xꢀray diffraction analysis.
(15) OꢀBoron enolates were successfully generated from the reduction
of methyl vinyl ketone and chalcone, but introduction of phosphine or IPr
did not lead to any observable OꢀtoꢀC isomerization.
(16) (a) Soderquist, J. A.; Najafi, M. R. J. Org. Chem. 1986, 51, 1330;
(b) Kabalka, G. W. J. Organomet. Chem. 1977, 125, 273.
Notes
The authors declare no competing financial interests.
ACKNOWLEDGMENT
(17) See Supplementary Information for details.
(18) Zhu, C.; Wang, R.; Falck, J. R. Org. Lett. 2012, 14, 3494.
(19) (a) Lipshutz, B. H.; Servesko, J. M.; Taft, B. R. J. Am. Chem. Soc.
2004, 126, 8352; (b) Ding, J.; Hall, D. G. Tetrahedron 2012, 68, 3428.
(20) Alcohol 4q is not stable for isolation and was therefore protected
as the TBS ether TBS-4q before isolation.
We thank Kong Ching Wong for preliminary experiments. We
also acknowledge the UGC Research Grants Council of Hong
Kong SAR, P. R. China for a GRF grant (Project No. HKU
17302415), the State Key Laboratory of Synthetic Chemistry, and
UGC funding administered by HKU for supporting the
electrospray ionization quadrupole TOF mass spectrometry
facilities for Interdisciplinary Research in Chemical Science.
(21) (R)ꢀTolBINAP served to promote the isomerization in this case
and no additional phosphine was needed to convert 2q to 3q.
(22) (a) Doucet, H. Eur. J. Org. Chem. 2008, 2008, 2013; (b) Crudden,
C. M.; Glasspoole, B. W.; Lata, C. J. Chem. Commun. 2009, 6704; (c)
Wang, C.ꢀY.; Derosa, J.; Biscoe, M. R. Chem. Sci. 2015, 6, 5105.
(23) (a) Lee, K.ꢀs.; Hoveyda, A. H. J. Am. Chem. Soc. 2010, 132, 2898;
(b) Kim, H.; Yun, J. Adv. Synth. Catal. 2010, 352, 1881; (c) Lipshutz, B.
H.; Papa, P. Angew. Chem. Int. Ed. 2002, 41, 4580; (d) Hoffmann, R. W.;
Ditrich, K.; Fröch, S. Liebigs Ann. Chem. 1987, 977; (e) Gennari, C.;
Colombo, L.; Poli, G. Tetrahedron Lett. 1984, 25, 2279
(24) (a) Ireland, R. E.; Mueller, R. H.; Willard, A. K. J. Am. Chem. Soc.
1976, 98, 2868; (b) Ireland, R. E.; Wipf, P.; Armstrong, J. D. J. Org.
Chem. 1991, 56, 650; (c) Corey, E. J.; Lee, D. H. J. Am. Chem. Soc. 1991,
113, 4026
(25) (a) Miller, S. P.; Morken, J. P. Org. Lett. 2002, 4, 2743; (b) Wong,
K. C.; Ng, E.; Wong, W.ꢀT.; Chiu, P. Chem. Eur. J. 2016, 22, 3709.
(26) Yun, J.; Kim, D.; Yun, H. Chem. Commun. 2005, 5181.
(27) (a) Adams, M. R.; Tien, C.ꢀH.; Huchenski, B. S. N.; Ferguson, M.
J.; Speed, A. W. H. Angew. Chem. Int. Ed. 2017, 56, 6268; (b) Chong, C.
C.; Rao, B.; Kinjo, R. ACS Catal. 2017, 7, 5814.
(28) For examples of BPin to Cu transmetallation, see: (a) Deng, J. Z.;
Paone, D. V.; Ginnetti, A. T.; Kurihara, H.; Dreher, S. D.; Weissman, S.
A.; Stauffer, S. R.; Burgey, C. S. Org. Lett. 2009, 11, 345; (b) Kim, J.;
Park, S.; Park, J.; Cho, S. H. Angew. Chem. Int. Ed. 2016, 55, 1498; (c)
Lin, L.; Yamamoto, K.; Mitsunuma, H.; Kanzaki, Y.; Matsunaga, S.;
Kanai, M. J. Am. Chem. Soc. 2015, 137, 15418; (d) Park, J.; Lee, Y.; Kim,
J.; Cho, S. H. Org. Lett. 2016, 18, 1210; (e) Shi, Y.; Hoveyda, A. H.
Angew. Chem. Int. Ed. 2016, 55, 3455; (f) Wei, X.ꢀF.; Shimizu, Y.; Kanai,
M. ACS. Cent. Sci. 2016, 2, 21; (g) Zhang, Z.ꢀQ.; Zhang, B.; Lu, X.; Liu,
J.ꢀH.; Lu, X.ꢀY.; Xiao, B.; Fu, Y. Org. Lett. 2016, 18, 952.
(29) Plotzitzka, J.; Kleeberg, C. Organometallics 2014, 33, 6915.
(30) We cannot exclude the possibility that copper may be acting as a
Lewis acid in the isomerization mechanism, but this seems inconsistent
with the reactivity trend that electronꢀrich ligands were more effective
than electron poor ones. For an example of Lewis acidꢀcatalyzed
borylative shift, see: van der Mei, F. W.; Miyamoto, H.; Silverio, D. L.;
Hoveyda, A. H. Angew. Chem. Int. Ed. 2016, 55, 4701.
REFERENCES
(1) (a) Cowden, C. J.; Paterson, I. In Organic Reactions; John Wiley &
Sons, Inc.: New York, 1997; Vol. 51, p 1; (b) Mahrwald, R. In Aldol
Reactions; Springer, Netherlands: Dordrecht, 2009, p 23.
(2) He, Z.; Zajdlik, A.; Yudin, A. K. Dalton Trans. 2014, 43, 11434.
(3) Ibrahim, M. R.; Bühl, M.; Knab, R.; Schleyer, P. V. R. J. Comput.
Chem. 1992, 13, 423.
(4) (a) Bai, J.; Burke, L. D.; Shea, K. J. J. Am. Chem. Soc. 2007, 129,
4981; (b) Chen, D.; Zhang, X.; Qi, W.ꢀY.; Xu, B.; Xu, M.ꢀH. J. Am. Chem.
Soc. 2015, 137, 5268; (c) Cheng, Q.ꢀQ.; Zhu, S.ꢀF.; Zhang, Y.ꢀZ.; Xie,
X.ꢀL.; Zhou, Q.ꢀL. J. Am. Chem. Soc. 2013, 135, 14094; (d) Denniel, V.;
Bauchat, P.; Toupet, L.; Carboni, B.; Danion, D.; DanionꢀBougot, R.
Tetrahedron Lett. 1995, 36, 3507; (e) He, Z.; Zajdlik, A.; Yudin, A. K.
Acc. Chem. Res. 2014, 47, 1029; (f) Li, X.; Curran, D. P. J. Am. Chem.
Soc. 2013, 135, 12076; (g) Ansorge, A.; Brauer, D. J.; Bürger, H.; Hagen,
T.; Pawelke, G. Angew. Chem. Int. Ed. 1993, 32, 384; (h) Brauer, D. J.;
Bürger, H.; BuchheimꢀSpiegel, S.; Pawelke, G. Eur. J. Inorg. Chem. 1999,
1999, 255; (i) Caskey, S. R.; Stewart, M. H.; Johnson, M. J. A.; Kampf, J.
W. Angew. Chem. Int. Ed. 2006, 45, 7422; (j) Li, J.; Burke, M. D. J. Am.
Chem. Soc. 2011, 133, 13774.
(5) For examples, see: (a) Liew, S. K.; Holownia, A.; Diaz, D. B.;
Cistrone, P. A.; Dawson, P. E.; Yudin, A. K. Chem. Commun. 2017, 53,
11237. (b) Diaz, D. B.; Scully, C. C. G.; Liew, S. K.; Adachi, S.;
Trinchera, P.; St. Denis, J. D.; Yudin, A. K. Angew. Chem. Int. Ed. 2016,
55, 12659; (c) Trinchera, P.; Corless, V. B.; Yudin, A. K. Angew. Chem.
2015, 127, 9166.
(6) (a) Dang, L.; Lin, Z.; Marder, T. B. Organometallics 2008, 27,
4443; (b) Liu, B.; Gao, M.; Dang, L.; Zhao, H.; Marder, T. B.; Lin, Z.
Organometallics 2012, 31, 3410.
(7) (a) Abiko, A.; Inoue, T.; Masamune, S. J. Am. Chem. Soc. 2002,
124, 10759; (b) Bell, N. J.; Cox, A. J.; Cameron, N. R.; Evans, J. S. O.;
Marder, T. B.; Duin, M. A.; Elsevier, C. J.; Baucherel, X.; Tulloch, A. A.
D.; Tooze, R. P. Chem. Commun. 2004, 1854.
ACS Paragon Plus Environment