50
F. Yan et al. / Dyes and Pigments 98 (2013) 42e50
[23] Liu K, Zhou Y, Yao C. A highly sensitive and selective ratiometric and colori-
metric sensor for Hg2þ based on a rhodamineenitrobenzoxadiazole conju-
gate. Inorg Chem Commun 2011;14:1798e801.
[50] Das P, Ghosh A, Bhatt H, Das A. A highly selective and dual responsive test
paper sensor of Hg2þ/Cr3þ for naked eye detection in neutral water. RSC Adv
2012;2:3714e21.
[24] Drummond MJ, Fry CS, Glynn EL, Timmerman KL, Dickinson JM, Walker DK,
et al. Skeletal muscle amino acid transporter expression is increased in
young and older adults following resistance exercise. J Appl Physiol 2010;
111:135e42.
[51] Chereddy NR, Suman K, Korrapati PS, Thennarasu S, Mandal AB. Design and
synthesis of rhodamine based chemosensors for the detection of Fe3þ ions.
Dyes Pigm 2012;95:606e13.
[52] Kim HN, Lee MH, Kim HJ, Kim JS, Yoon JY. A new trend in rhodamine-based
chemosensors: application of spirolactam ring-opening to sensing ions.
Chem Soc Rev 2008;37:1465e72.
[25] Melone M, Varoqui H, Erickson JD, Conti F. Localization of the Naþ-coupled
neutral amino acid transporter 2 in the cerebral cortex. Neuroscience 2006;
140:281e92.
[53] Mariana B, Carlos AMA, Jose MGM. Synthesis and applications of rhodamine
derivatives as fluorescent probes. Chem Soc Rev 2009;38:2410e33.
[54] Ahamed BN, Ghosh P. An integrated system of pyrene and rhodamine-6G for
selective colorimetric and fluorometric sensing of mercury (II). Inorg Chim
Acta 2011;372:100e7.
[26] Yang HM, Park CW, Ahn T, Jung B, Seo BK, Park JH, et al. A direct surface
modification of iron oxide nanoparticles with various poly(amino acid)s for
use as magnetic resonance probes. J Colloid Interf Sci 2012;391:158e67.
[27] Vesely T, Trakal L, Neuberg M, Szakova J, Drabek O, Tejnecky V, et al. Removal
of Al, Fe and Mn by Pistia stratiotes L. and its stress response. Cent Eur J Biol
2012;7:1037e45.
[55] Suresh M, Mishra SK, Mishra S, Das A. The detection of Hg2þ by cyanobacteria
in aqueous media. Chem Commun 2009:2496e8.
[28] Liu XH, Li JS, Dong JS, Hu C, Gong WM, Wang JY. Genetic incorporation of a
metal-chelating amino acid as a probe for protein electron transfer. Angew
Chem Int Edit 2012;51:10261e5.
[29] Park N, Ryu J, Jang S, Lee HS. Metal ion affinity purification of proteins by
genetically incorporating metal-chelating amino acids. Tetrahedron 2012;68:
4649e54.
[56] Saha S, Chhatbar MU, Mahato P, Praveen L, Siddhanta AK, Das A. Rhodaminee
alginate conjugate as self indicating gel beads for efficient detection and scav-
enging of Hg2þ and Cr3þ in aqueous media. Chem Commun 2012;48:1659e61.
[57] Saha S, Mahato P, Baidya M, Ghosh SK, Das A. An interrupted PET coupled
TBET process for the design of a specific receptor for Hg2þ and its intracellular
detection in MCF7 cells. Chem Commun 2012;48:9293e5.
[30] Kwon SK, Kim HN, Rho JH, Swamy KMK, Shanthakumar SM, Yoon J. Rhoda-
mine derivative bearing histidine binding site as a fluorescent chemosensor
for Hg2þ. Bull Korean Chem Soc 2009;30:719e21.
[31] Xiang Y, Tong AJ, Jin PY, Ju Y. New fluorescent rhodamine hydrazone che-
mosensor for Cu (II) with high selectivity and sensitivity. Org Lett 2006;8:
2863e6.
[32] Huang W, Song C, He C, Lv G, Hu X, Zhu X, et al. Recognition preference of
rhodamine-thio spirolactams for mercury (II) in aqueous solution. Inorg Chem
2009;48:5061e72.
[58] Nolan EM, Lippard SJ. Tools and tactics for the optical detection of mercuric
ion. Chem Rev 2008;108:3443e80.
[59] Quang DT, Kim JS. Fluoro- and chromogenic chemodosimeters for heavy metal
ion detection in solution and biospecimens. Chem Rev 2010;110:6280e301.
[60] Mahato P, Saha S, Suresh E, Liddo RD, Parnigotto PP, Conconi MT, et al.
Ratiometric detection of Cr3þ and Hg2þ by a naphthalimide-rhodamine based
fluorescent probe. Inorg Chem 2012;51:1769e77.
[61] Mahato P, Ghosh A, Saha S, Mishra S, Mishra SK, Das A. Recognition of Hg2þ using
diametrically disubstituted cyclam unit. Inorg Chem 2010;49:11485e92.
[62] Saha S, Mahato P, Upendar RG, Suresh E, Chakrabarty A, Baidya M, et al.
Recognition of Hg2þ and Cr3þ in physiological conditions by a rhodamine
derivative and its application as a reagent for cell-imaging studies. Inorg
Chem 2012;51:336e45.
[33] Kwon JY, Jang YJ, Lee YJ, Kim KM, Yoon J. A highly selective fluorescent che-
mosensor for Pb2þ. J Am Chem Soc 2005;127:10107e11.
[34] Yu CW, Chen LX, Zhang J, Li JH, Liu P, Wang WH, et al. “OffeOn” based fluo-
rescent chemosensor for Cu2þ in aqueous media and living cells. Talanta
2011;85:1627e33.
[35] Huang L, Wang X, Xie GQ, Xi PX, Li ZP, Xu M, et al. A new rhodamine-based
chemosensor for Cu2þ and the study of its behavior in living cells. Dalton
Trans 2010;39:7894e6.
[36] Dong L, Wu C, Zeng X, Mu L, Xue SF, Tao Z, et al. The synthesis of a rhodamine
B schiff-base chemosensor and recognition properties for Fe3þ in neutral
ethanol aqueous solution. Sens Actuators B 2010;145:433e7.
[37] Tang LJ, Li FF, Liu MH, Nandhakumar R. Single sensor for two metal ions:
colorimetric recognition of Cu2þ and fluorescent recognition of Hg2þ. Spec-
trochim Acta A 2011;78:1168e72.
[38] Kim HN, Ren WX, Kim JS, Yoon J. Fluorescent and colorimetric sensors for
detection of lead, cadmium, and mercury ions. Chem Soc Rev 2012;41:3210e44.
[39] Chen XQ, Pradhan T, Wang F, Kim JS, Yoon J. Fluorescent chemosensors based
on spiroring-opening of xanthenes and related derivatives. Chem Rev 2012;
112:1910e56.
[40] Ding JH, Yuan LD, Gao L, Chen JW. Fluorescence quenching of a rhodamine
derivative: selectively sensing Cu2þ in acidic aqueous media. J Lumin 2012;
132:1987e93.
[41] Yan FY, Cao DL, Wang M, Yang N, Yu QH, Dai LF, et al. A new rhodamine-based
“OffeOn” fluorescent chemosensor for Hg (II) ion and its application in im-
aging Hg (II) in living cells. J Fluoresc 2012;22:1249e56.
[42] Chen XQ, Jou MJ, Lee H, Kou S, Lim J, Nam SW, et al. New fluorescent and
colorimetric chemosensors bearing rhodamine and binaphthyl groups for the
detection of Cu2þ. Sens Actuators B 2009;137:597e602.
[43] Zheng XY, Zhang WJ, Mu L, Zeng X, Xue SF, Tao Z, et al. A novel rhodamine-
based thiacalix[4]arene fluorescent sensor for Fe3þ and Cr3þ. J Incl Phenom
Macro 2010;68:139e46.
[63] Suresh M, Mandal AK, Saha S, Suresh E, Mandoli A, Liddo RD, et al. Azine-
based receptor for recognition of Hg2þ ion: crystallographic evidence and
imaging application in live cells. Org Lett 2010;12:5406e9.
[64] Suresh M, Shrivastav A, Mishra S, Suresh E, Das A. A rhodamine-based che-
mosensor that works in the biological system. Org Lett 2008;10:3013e6.
[65] Suresh M, Mishra S, Mishra SK, Suresh E, Mandal AK, Shrivastav A, et al.
Resonance energy transfer approach and a new ratiometric probe for Hg2þ in
aqueous media and living organism. Org Lett 2009;11:2740e3.
[66] Mandal AK, Suresh M, Das P, Suresh E, Baidya M, Ghosh SK, et al. Recognition
of Hg2þ ion through restricted imine isomerization: crystallographic evidence
and imaging in live cells. Org Lett 2012;14:2980e3.
[67] Wang YH, Huang YQ, Li B. A cell compatible fluorescent chemosensor for Hg2þ
based on a novel rhodamine derivative that works as a molecular keypad lock.
RSC Adv 2011;1:1294e300.
[68] Zhao Y, Zheng BZ, Du J, Xiao D, Yang L. A fluorescent “turn-on” probe for the
dual-channel detection of Hg(II) and Mg(II) and its application of imaging in
living cells. Talanta 2011;85:2194e201.
[69] Bhalla V, Tejpal R, Kumar M. Rhodamine appended terphenyl: a reversible
“offeon” fluorescent chemosensor for mercury ions. Sens Actuators B 2010;
151:180e5.
[70] Ma QJ, Zhang XB, Zhao XH. A highly selective fluorescent probe for Hg2þ based
on a rhodamine-coumarinconjugate. Anal Chim Acta 2010;663:85e90.
[71] Ma TH, Zhang AJ, Dong M. A simply and highly selective ‘‘turn-on’’ type
fluorescent chemosensor for Hg2þ based on chiral BINOL-Schiff’s base ligand.
J Lumin 2010;130:888e92.
[72] Yan FY, Cao DL, Yang N, Yu QH, Wang M, Chen L. A selective turn-on fluo-
rescent chemosensor based on rhodamine for Hg2þ and its application in live
cell imaging. Sens Actuators B 2012;162:313e20.
[73] Ghosh K, Sarkar T, Samadder A. A rhodamine appended tripodal receptor as a
ratiometric probe for Hg2þ ions. Org Biomol Chem 2012;10:3236e43.
[74] Wang LN, Yan JX, Qin WW, Liu WS, Wang R. A new rhodamine-based single
molecule multianalyte (Cu2þ, Hg2þ) sensor and its application in the biological
system. Dyes Pigm 2012;92:1083e90.
[75] Hu ZQ, Yang XD, Cui CL. 1, 8-Anthrancene disulfonamide: a simple but highly
sensitive and selective fluorescent chemosensor for Hg2þ in aqueous media.
Sens Actuators B 2010;145:61e5.
[76] Zhao Y, Sun Y, Lv X, Liu YL, Chen ML, Guo W. Rhodamine-based chemosensor
for Hg2þ in aqueous solution with a broad pH range and its application in live
cell imaging. Org Biomol Chem 2010;8:4143e7.
[44] Soh JH, Swamy KMK, Kim SK, Kim S, Lee SH, Yoon J. Rhodamine urea de-
rivatives as fluorescent chemosensors for Hg2þ. Tetrahedron Lett 2007;48:
5966e9.
[45] Zhang X, Shiraishi Y, Hirai T. Cu (II) selective green fluorescence of
rhodamine-diacetic acid conjugate. Org Lett 2007;9:5039e42.
a
[46] Mercero JM, Matxain JM, Lopez X, Fowler JE, Ugalde JM. Aluminum (III) in-
teractions with the side chains of aromatic aminoacids. Int J Quantum Chem
2002;90:859e81.
[47] Tang LJ, Li Y, Nandhakumar R, Qian JH. An unprecedented rhodamine-based
fluorescent and colorimetric chemosensor for Fe3þ in aqueous media. Mon-
atsh Chem 2010;141:615e20.
[48] Romanova Zinaida S, Deshayes Kurt, Piotrowiak Piotr. Remote intermolecular
“Heavy-atom effect”: spin-orbit coupling across the wall of a hemicarcerand.
J Am Chem Soc 2001;123:2444e5.
[77] Wang HH, Xue L, Yu CL, Qian YY, Jiang H. Rhodamine-based fluorescent sensor
for mercury in buffer solution and living cells. Dyes Pigm 2011;91:350e5.
[78] Wang HG, Li YP, Xu SF. Rhodamine-based highly sensitive colorimetric off-on
fluorescent chemosensor for Hg2þ in aqueous solution and for live cell im-
aging. Org Biomol Chem 2011;9:2850e5.
[49] Das P, Ghosh A, Das A. Unusual specificity of a receptor for Nd3þ among other
lanthanide ions for selective colorimetric recognition. Inorg Chem 2010;49:
6909e16.