1468
M. A. Ramírez et al. / Tetrahedron Letters 52 (2011) 1466–1468
9. (a) Lu, Z.; Twieg, R. J. Tetrahedron Lett. 2005, 46, 2997; (b) Orelli, L. R.; Salerno,
A.; Hedrera, M. E.; Perillo, I. A. Synth. Commun. 1998, 29, 1625; (c) Orelli, L. R.;
Blanco, M. M.; Garcia, M. B.; Hedrera, M. E.; Perillo, I. A. Synth. Commun. 2001,
31, 685; d Chang, Y. H.; Evanega, G. R.; McLamore, W. M. U.S. Patent 3,729564,
1973, among others.
with the aryl groups containing different substituents (halogens,
nitro, and alkoxy) and was extended to obtain N-benzyl and N,N-
selectively disubstituted derivatives with very good yields.
10. (a) Alonso Garrido, D. O.; Buldain, G.; Frydman, B. J. Org. Chem. 1984, 49, 2021;
(b) Salvatore, R. N.; Schmidt, S. E.; Shin, S. I.; Nagle, A. S.; Worrell, J. H.; Jung, K.
W. Tetrahedron Lett. 2000, 41, 9705; (c) Khoukhi, M.; Vaultier, M.; Benalil, A.;
Carboni, B. Synthesis 1996, 483. among others..
11. Ramirez, M. A.; Corona, M. V.; Blanco, M. M.; Perillo, I. A.; Porcal, W.; Salerno, A.
Tetrahedron Lett. 2010, 51, 5000. This paper corresponds to Part I of the series..
12. Stirling, C. J. M. J. Chem. Soc. 1958, 4531. and references cited therein..
13. (a)For reviews on microwave chemistry, see: Microwaves in Organic Synthesis;
Loupy, A., Ed.; Wiley-VCH: Weinheim, 2002; (b) Kappe, C. O.; Dallinger, D. Nat.
Rev. Drug Disc. 2006, 5, 55; (c) Roberts, B. A.; Strauss, C. R. Acc. Chem. Res. 2005,
38, 653; (d) Kappe, C. O. Angew. Chem., Int. Ed. 2004, 43, 6250.
Acknowledgments
This work was financially supported by the Universidad de Bue-
nos Aires and the Agencia Nacional de Promoción Científica y
Tecnológica.
Supplementary data
14. In a typical reaction, in a 10 mL glass tube were placed the appropriate
chloroamide 2 (1 mmol), sodium azide (2.5 mmol) and DMF (3 mL). The tube
was closed with a septum and placed into the microwave cavity. The reaction
mixture was subjected to microwave irradiation (200 W) 60 °C, 15 min for 3a–
l, n = 4 and 70 °C, 45 min for 3a–l, n = 5. After allowing the mixture to cool to
room temperature, the reaction vessel was opened and the mixture was
poured into ice-water. If the product crystallized, the resulting solid was
filtered, washed with water and purified by recrystallization or by
chromatographic methods. If not, the suspension was extracted with
chloroform and the organic layer was washed with water, dried,
concentrated in vacuo and purified by chromatographic methods.
15. (a) Scriven, E. F. V.; Turnbull, K. Chem. Rev. 1988, 88, 298; (b) Bräse, S.; Gil, C.;
Knepper, K.; Zimmermann, V. Angew. Chem., Int. Ed. 2005, 44, 5188.
16. (a)Reductions in Organic Chemistry; Hudlicky, M., Ed.; John Wiley & Sons: New
York, 1984; (b)Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.;
Pergamon: Oxford, UK, 1991; Vol. 8, (c)Reductions by the Alumino and
Borohydrides in Organic Synthesis; Seyden-Penne, J., Ed.; Wiley VCH: New
York, 1997.
17. Compounds 2 (5 mmol) were treated with BH3/THF (10 mL satd soln) and
heated under reflux under argon atmosphere for 1.5–2 h. THF was evaporated
in vacuo and the residue boiled with concentrated hydrochloric acid (10 mL)
for 3 h after which the solution was cooled and allowed to stand at room
temperature for 12 h. The acid solution was diluted with water (5 mL) and then
made alkaline (pH 12) with sodium hydroxide pellets. The mixture was
extracted with ethyl acetate (4 ꢀ 20 mL) and the organic layer was washed
with water (5 mL), dried with anhydrous sodium sulfate, filtered, and
evaporated in vacuo affording the corresponding compounds 1a–l as oils,
which were purified by column chromatography (chloroform/methanol 8:2–
1:1). Reduction with lithium aluminum hydride/THF was carried out according
to the literature procedure19 with minor modifications. Yields are depicted in
Table 2.
Supplementary data associated with this article can be found, in
References and notes
1. Burns, M. R. U.S. Patent 6,872,852, 2005.
2. (a) Aizencang, G.; Harari, P.; Buldain, G.; Guerra, L.; Pickart, M.; Hernández, P.;
Frydman, B. Cell. Mol. Biol. 1998, 44, 615. and references cited therein.; (b)
Burns, M. R.; LaTurner, S.; Ziemer, J.; McVean, M.; Devens, B.; Carlson, C. L.;
Gramisnski, G. F.; Vanderwerf, S. M.; Weeks, R. S.; Carreon, J. Bioorg. Med. Chem.
Lett. 2002, 12, 1263; (c) Dai, H.; Kramer, D. L.; Yang, C.; Murti, K. G.; Porter, C.
W.; Cleveland, J. L. Cancer Res. 1999, 59, 4944; (d) Lee, W. W.; Berridge, B. J.;
Ross, L. O.; Goodman, L. J. Med. Chem. 1963, 6, 567; (e) Frydman, B. U.S. Patent
5,677,350, 1997.; (f) Heston, W. D. W.; Watanabe, K. A.; Pankiewicz, K. W.;
Covey, D. F. Biochem. Pharmacol. 1987, 36, 1849.
3. Cesar, E. T.; de Almeida, M. V.; Soares Fontes, A. P.; Pereira Maia, E. C.; Garnier-
Suillerot, A.; Costa Couri, M. R.; Felicio, E. C. A. J. Inorg. Biochem. 2003, 95, 297.
4. (a) Stemberg, P.; Ljunggren, C.; Nilsson, J. L. G.; Lundén, R.; Eriksson, O. J. Med.
Chem. 1972, 15, 674; (b) Ahmad, P.; Fyfe, C. A.; Mellors, A. Biochem. Pharmacol.
1975, 24, 1103; (c) Hoffmann, K.-J.; Stenberg, P.; Ljunggren, C.; Svensson, U.;
Nilsson, J. L. G. J. Med. Chem. 1975, 18, 278.
5. Boigegrain, R.; Brodin, R.; Kan, J. P.; Olliero, D.; Bourguignon, J. J.; Worms, P. U.S.
Patent 5,461,053, 1995; Chem. Abstr. 1995, 124, 261059.
6. Bergeron, R. J.; Weimar, W. R.; Wu, Q.; Feng, Y.; McManis, J. S. J. Med. Chem.
1996, 39, 5257.
7. Da Costa, C. F.; Coimbra, E. S.; Braga, F. G.; Dos Reis, R. C. N.; Da Silva, A. D.; De
Almeida, M. V. Biomed. Pharmacother. 2009, 63, 40.
8. (a) Wang, J.; Xie, S.; Li, Y.; Guo, Y.; Ma, Y.; Zhao, J.; Phanstiel, O., IV; Wang, C.
Bioorg. Med. Chem 2008, 16, 7005; (b) Bergeron, R. J.; Yao, G. W.; Yao, H.;
Weimar, W. R.; Sninsky, C. A.; Raisler, B.; Feng, Y.; Wu, Q.; Gao, F. J. Med. Chem.
1996, 39, 2461; (c) Bergeron, R. J.; Neims, A. H.; McManis, J. S.; Hawthorne, T.
R.; Vinson, J. R. T.; Bortell, R.; Ingeno, M. J. J. Med. Chem. 1988, 31, 1183.
18. Wright, W. B.; Brabander, H. J. J. Org. Chem. 1961, 26, 4057.
19. Mic´ovic´, V. M.; Mihailovic´, M. L. J. Org. Chem. 1953, 18, 1190.