CHART 1. Representative Bioactive TRAMs and Analogues
Dual-Reagent Catalysis within Ir-Sn Domain:
Highly Selective Alkylation of Arenes and
Heteroarenes with Aromatic Aldehydes
Susmita Podder, Joyanta Choudhury, Ujjal Kanti Roy,
and Sujit Roy*
Organometallics & Catalysis Laboratory, Department of
Chemistry, Indian Institute of Technology,
Kharagpur 721302, India
ReceiVed December 22, 2006
for carbon-carbon bond formation3 led us to recently propose
a dual-reagent catalyst system comprised of Ir(I) and Sn(IV)
for the FCA of arenes using alcohols.4 Herein we demonstrate
the further utility of the reagent combination for the bisarylation
of aldehydes leading to highly selective formation of triaryl-
methanes (TRAMs).
Motifs bearing triarylmethane (TRAM) and their heterocyclic
variants constitute an integral part of a number of bioactive
compounds, prodrugs, pharmaceuticals, and dyes (Chart 1).5
They are also well exploited as building blocks for dendrimers,
and NLOs.6 Routes to TRAMs, via Lewis acid (LA) catalyzed
alkylation of arenes with aldehyde as alkylating agent, are often
restricted by the formation of a multitude of products, a high
(even stoichiometric) amount of catalyst loading, and at times
drastic reaction conditions.7 While LA-catalyzed reductive
alkylations of arenes with aldehydes do not suffer from the said
process limitations, they afford exclusively the corresponding
diarylmethanes.8 Two most recent reports on TRAM-selective
transformations using catalytic BF3:H2O or AuCl3/3AgOTf are
Reactions of arenes and heteroarenes with aromatic aldehydes
proceeded smoothly in the presence of a catalytic combina-
tion of [Ir(COD)Cl]2-SnCl4 to afford the corresponding
triarylmethane derivatives (TRAMs) in high yields. This
100% TRAM selective transformation is clean and eliminates
the use of acid systems.
Even after 125 years since its discovery, Friedel-Crafts
alkylation (FCA) remains a fundamental tool for the construction
of various organic architectures of pharmaceutical and industrial
relevance.1 Within the FCA domain, there has been multiprong
development in the area of alkylation of arenes and heteroarenes.
Tuning a FCA catalyst to deliver high turnover frequency (TOF),
substrate and alkylating agent selectivity, and envirotolerability
continues to be an important exercise. Toward this pursuit, the
evolution/resurgence of d- and f-block metal catalysts (either
simple salts or designer complexes) is quite breathtaking.2 Our
continuing success in developing an efficient bimetallic pathway
(3) (a) Sinha, P.; Roy, S. Organometallics 2004, 23, 67. (b) Banerjee,
M.; Roy, S. Org. Lett. 2004, 6, 2137. (c) Banerjee, M.; Roy, S. J. Mol.
Catal. A: Chem. 2006, 246, 231.
(4) Choudhury, J.; Podder, S.; Roy, S. J. Am. Chem. Soc. 2005, 127,
6162.
(5) (a) Wulff, H.; Miller, M. J.; Ha¨nsel, W.; Grissmer, S.; Cahalan,
M. D.; Chandy, K. G. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 8151. (b)
McNaughton-Smith, G. A.; Rigdon G. C.; Stocker, J. W. Icagen, Inc.,
U.S.A., PCT Int. Appl. WO-2000050026, 2000 [CAN 133, 187954]. (c)
Lacroix, R.; Poupelin, J. P.; Lacroix, J.; Reynouard, F.; Combescot, C. Ann.
Pharm. Fr. 1979, 37, 131. (d) Poupelin, J. P.; Saint-Ruf, G.; Foussard-
Blanpin, O.; Narcisse, G.; Uchida-Ernouf, G.; Lacroix, R. Eur. J. Med.
Chem. 1978, 13, 67. (e) Manzoni, C.; Lovati, M. R.; Bonelli, A.; Galli, G.;
Sirtori, C. R. Eur. J. Pharmacol. 1990, 190, 39. (f) Finer, J. T.; Chabala
J. C.; Lewis, E. Cytokinetics, Inc., U.S.A., PCT Int. Appl. WO-2002056880,
2005, [CAN 137, 124985]. (g) Mibu, N.; Yokomizo, K.; Uyeda, M.; Sumoto,
K. Chem. Pharm. Bull. 2003, 51, 1325. (h) Oclarit, J. M.; Ohta, S.;
Kamimura, K.; Yamaoka, Y.; Shimizu, T.; Ikegami, S. Nat. Prod. Lett.
1994, 4, 309.
(6) (a) Shagufta, S. K. D.; Panda, G. Tetrahedron Lett. 2005, 46, 3097
and references cited therein. (b) Sanguinet, L.; Twieg, R. J.; Wiggers, G.;
Mao, G.; Singer, K. D.; Petschek, R. G. Tetrahedron Lett. 2005, 46, 5121.
(c) Baker, L. A.; Sun, L.; Crooks, R. M. Bull. Korean Chem. Soc. 2002,
23, 647.
(7) Selected references: (a) Roberts, R. M.; EI-Khawaga, A. M.; Sweeney
K. M.; EI-Zohry, M. F. J. Org. Soc. 1987, 52, 1591 and references cited
therein. (b) Mibu, N.; Yokomizo, K.; Uyeda, M.; Sumoto, K. Chem. Pharm.
Bull. 2003, 51, 1325.
(1) (a) Olah, G. A. Friedel Crafts and Related Reactions; Wiley-
Interscience: New York, 1964; Vol. II, Part I. (b) Olah, G. A. A Life of
Magic Chemistry. Autobiographical reflections of a Nobel Prize winner;
Wiley-Interscience: New York, 2001. (c) Roberts, R. M.; Khalaf, A. A.
Friedel-Crafts Alkylation Chemistry. A Century of DiscoVery; Marcel
Dekker: New York, 1984.
(2) For an overview: (a) Lewis Acids in Organic Synthesis; Yamamoto,
H., Ed.; Wiley-VCH: Weinheim, Germany, 2000; Vols. 1 and 2. (b)
Kobayashi, S. In Stimulating Concepts in Chemistry; Vo¨gtle, F., Stoddart,
J. F., Shibasaki, M., Eds.; Wiley-VCH: Weinheim, Germany, 2000; pp
3-12. (c) Corma, A.; Garcia, H. Chem. ReV. 2003, 103, 4307. (d) Bandini,
M.; Melloni, A.; Umani-Ronchi, A. Angew. Chem., Int. Ed. 2004, 43, 550.
(e) Fu¨rstner, A.; Voigtla¨nder, D.; Schrader, W.; Giebel, D.; Reetz, M. T.
Org. Lett. 2001, 3, 417. (f) Dyker, G.; Hildebrandt, D.; Liu, J.; Merz, K.
Angew. Chem., Int. Ed. 2003, 42, 4399. (g) Mertins, K.; Jovel, I.; Kischel,
J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005, 44, 238. (h) Iovel, I.;
Mertins, K.; Kischel, J.; Zapf, A.; Beller, M. Angew. Chem., Int. Ed. 2005,
44, 3913.
(8) (a) Hashimoto, Y.; Hirata, K.; Kagoshima, H.; Kihara, N.; Hasegawa,
M.; Saigo, K. Tetrahedron 1993, 49, 5969. (b) Tsuchimoto, T.; Tobita, K.;
Hiyama, T.; Fukuzawa, S-I. J. Org. Soc. 1997, 62, 6997. (c) Miyai, T.;
Oniishi, Y.; Baba, A. Tetrahedron 1999, 55, 1017.
10.1021/jo062633n CCC: $37.00 © 2007 American Chemical Society
Published on Web 03/20/2007
3100
J. Org. Chem. 2007, 72, 3100-3103